Модуль «DYNA»

ДИНАМИЧЕСКИЙ АНАЛИЗ СИСТЕМ
SOFISTIK 2016
<table>
<thead>
<tr>
<th>ОГЛАВЛЕНИЕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DYN – ОПИСАНИЕ ЗАДАЧИ .. 5</td>
</tr>
<tr>
<td>2 ТЕОРЕТИЧЕСКИЕ ПРИНЦИПЫ ... 7</td>
</tr>
<tr>
<td>2.1 Введение ... 7</td>
</tr>
<tr>
<td>2.2 Прямые методы анализа устойчивости системы 10</td>
</tr>
<tr>
<td>2.2.1 Интеграл Диоамеля ... 10</td>
</tr>
<tr>
<td>2.2.2 Интегрирование уравнений движения .. 10</td>
</tr>
<tr>
<td>2.3 Модальный анализ устойчивости системы ... 15</td>
</tr>
<tr>
<td>2.3.1 Модальная декомпозиция ... 15</td>
</tr>
<tr>
<td>2.3.2 Определение собственных значений ... 16</td>
</tr>
<tr>
<td>2.3.3 Модальный расчет обобщенной SDOF системы 18</td>
</tr>
<tr>
<td>2.3.4 Расчет модального демпфирования ... 20</td>
</tr>
<tr>
<td>2.3.5 Решение уравнений различных форм колебаний 21</td>
</tr>
<tr>
<td>2.4 Модальный анализ колебаний для гармонического возбуждения 23</td>
</tr>
<tr>
<td>2.5 Расчет по спектральным кривым (спектральный метод расчета) 28</td>
</tr>
<tr>
<td>2.5.1 Спектры колебаний при землетрясениях (акселерограмма землетрясений) .. 28</td>
</tr>
<tr>
<td>2.5.2 Анализ спектра ветрового воздействия 31</td>
</tr>
<tr>
<td>2.5.3 Наложение максимальных значений реакций системы (суперпозиция) .. 32</td>
</tr>
<tr>
<td>2.5.4 Знак соответствующих усилий и моментов 33</td>
</tr>
<tr>
<td>2.6 Динамический анализ системы при ускорении основания или при землетрясениях ... 35</td>
</tr>
<tr>
<td>2.6.2 Равномерное возбуждение основания 37</td>
</tr>
<tr>
<td>2.6.3 Многократное возбуждение основания 39</td>
</tr>
<tr>
<td>2.6.4 Метод больших масс и метод больших жесткостей 41</td>
</tr>
<tr>
<td>2.6.5 Коррекция исходной (эмпирической) кривой акселерограммы 43</td>
</tr>
<tr>
<td>2.6.6 Динамическая нагрузка в виде ускорения грунтового основания .. 45</td>
</tr>
<tr>
<td>2.6.7 Суммарная реакция/отклик расчетной системы 47</td>
</tr>
<tr>
<td>2.6.8 Эквивалентные модальные нагрузки ... 48</td>
</tr>
<tr>
<td>2.6.9 Эффективная модальная масса .. 48</td>
</tr>
<tr>
<td>2.6.10 Расчет опрокидывающего момента и сдвигающего усилия 50</td>
</tr>
<tr>
<td>2.7 Кинематические связи .. 57</td>
</tr>
</tbody>
</table>
2.8 Упругость... 58
2.9 Геометрическая характеристика жесткости и P-delta анализ конструкции .. 59
2.10 Эффект нелинейности.. 61
2.11 FAQ .. 62
 2.11.1 Ручной контроль результатов спектрального анализа реакций/откликов системы (RSA) .. 62
 2.11.2 Коэффициент преобразования MDOF системы в эквивалентную SDOF систему (модальный коэффициент участия) 67
 2.11.3 Эквивалентные модальные нагрузки .. 68
 2.11.4 Масштабирование обобщенных свойств SDOF системы для упорядочивания различных собственных векторов системы 70
БИБЛИОГРАФИЧЕСКИЙ СПИСОК .. 73
3 ОПИСАНИЕ КОМАНД... 74
 3.1 Используемый язык программирования .. 74
 3.2 Ввод данных в расчетную систему ... 75
 3.3 SYST – Параметры расчетной системы 76
 3.4 CTRL – Расчетные параметры системы 78
 3.4.1 SOLV – Решатель уравнений ... 83
 3.4.2 CORE – Параллельный контроль вычислительных процессов 89
 3.5 GRP – Выбор групп элементов .. 91
 3.6 MAT – Общие свойства материала ... 94
 3.7 BMAT – Упругое основание/Зона контакта/Граница раздела двух тел 95
 3.8 SMAT–SBFEM – Свойства материала 100
 3.9 MASS – Сосредоточенные массы ... 101
 3.10 EIGE – Собственные значения и собственные вектора 104
 3.11 MODD – Модальное демпфирование/демпфирование форм колебаний ... 108
 3.12 STEP – Параметры поэтапной интеграции уравнений движения 113
 3.13 LC – Случай загружения ... 116
 3.14 CONT – Функции контактной и подвижной нагрузок 118
 3.15 HIST – Результаты анализа соответствующего временного участка 121
 3.16 EXTR – Оценка максимальных значений внутренних усилий и моментов 124
 3.17 ECHO – Вывод результатов расчета .. 132
4 ВЫВОД РЕЗУЛЬТАТОВ АНАЛИЗА СИСТЕМЫ 136
4.1 Узлы ... 136
4.2 Поперечные сечения .. 136
4.3 Общие параметры ... 137
4.4 Элементы расчетной системы .. 137
4.5 Собственные частоты колебания системы .. 137
4.6 Случаи загружения, функции и нагрузки ... 138
4.7 Перемещения ... 139
4.8 Внутренние усилия и моменты ... 139
4.9 Изменения системы по времени ... 139

5 ПРИМЕРЫ РЕШАЕМЫХ ЗАДАЧ .. 141
5.1 Колебание одиночной массы – груз на пружине 141
5.2 Частота собственных колебаний изогнутой балки 149
5.3 Собственные колебания абсолютно твердого тела 158
5.4 Колебание системы из двух масс .. 170
 5.4.1 Суперпозиция/наложение собственных форм 170
 5.4.2 Суперпозиция/наложение колебаний и спектров 176
 5.4.3 Суперпозиция возбудителей землетрясения, приложенных в разных
 направлениях ... 179
5.5 Многоярусная стержневая конструкция (каркас, ферма) 183
1 ДYNА – ОПИСАНИЕ ЗАДАЧИ

Модуль DYNА может быть использован при статическом анализе расчетной системы, но прежде всего, он применяется при динамическом анализе объемных расчетных систем. Данный модуль решает следующие задачи (для решения некоторых из них может потребоваться специальная лицензия):

- Статический анализ случаев загружения LC, воздействующих на объемные, плоские и аксиально-симметричные (через систему проходит несколько осей симметрий) расчетные системы
- Статический анализ случаев загружения LC вслед за расчетом системы по теории второго порядка
- Расчет частот собственных колебаний объемных систем
- Расчет собственных значений потери устойчивости объемных систем
- Неявное прямое интегрирование уравнений динамики расчетных систем с произвольным демпфированием
- Явное прямое интегрирование уравнений динамики
- Взаимодействие нагрузок от железнодорожного состава и от ветра
- Взаимодействие моделей грунта с SBFEM – Scaled Boundary Finite Element Method/Создание расчетного участка в конечно-элементной модели грунта
- Интегрирование уравнений движения путем наложения (суперпозиция) форм колебаний
- Расчет устойчивых колебаний и спектра вынужденных колебаний

Статическая система сохраняется в базе данных после того, как она будет сгенерирована, например, модулем SOFiMSHA, SOFiMSHC или SOFiPLUS.

В модуле DYNА обрабатываются следующие элементы расчетной системы:

- Точечные массы (только не диагональные/наклонные элементы системы)
Объемные изогнутые в дугу балки призматического сечения, деформации кручения и элементы основания (свай, балластный слой)
• Элементы ферм и кабели/нити
• Пружинные элементы, граничные и гибкие FLEX элементы
• SBFEM – Scaled Boundary Finite Element Method/Создание расчетного участка в конечно-элементной модели грунта
• Демпфирующие элементы
• Оболочечные элементы
• Элементы грунтового массива в 3D

При явном интегрировании системы не все ее элементы подвергаются обработке модулем DYNA. При данных условиях обработке подвергаются только кабельные, пружинные, объемные BRIC элементы и элементы фермы TRUSS. Комбинирование нагрузок (ветер, подвижной железнодорожный состав, грунты) не доступно. Однако рассматриваемый модуль учитывает геометрические и физические нелинейности расчетной системы.

Результаты динамического анализа расчетной системы, включая ее формы колебаний, сохраняются в базе данных в виде перемещений и напряжений, возникающих от соответствующего случая загружения LC.

Формы колебаний, помимо первого способа, могут быть получены после проведения соответствующего расчета в модуле ASE, результаты которого также сохраняются в базе данных программы.

В зависимости от целей проведения динамического анализа, модуль DYNA способен выделить максимальное и минимальное значения из всех полученных в результате расчета перемещений, скоростей или ускорений, а также внутренних усилий и моментов. В конечном итоге пользователь может наблюдать изменения этих параметров во времени, учитывая при этом степени свободы рассматриваемого элемента расчетной системы или системы в целом.

Скорость решения и протекающих в процессе его поиска соответствующих операций зависит от мощности расчетной машины ПК. Одним из главных
параметров ПК для обеспечения высокой скорости расчета/анализа системы является достаточное количество оперативной памяти. Модальный расчет или расчет форм колебаний, преобразующий собственные значения, полученные после расчета в модуле ASE, не зависит от недостатка оперативной памяти в ПК.

2 ТЕОРЕТИЧЕСКИЕ ПРИНЦИПЫ

2.1 Введение

Уравнения динамики

Базовой и одновременно элементарной динамической системой является динамическая система с одной степенью свободы – система масса/тело – пружина – демпфер изображена на рис. 2.1.

Рис. 2.1 – Система масса/тело – пружина – демпфер

Один из способов получения главного линейного уравнения движения для расчетной системы с одной степенью свободы (SDOF – Single Degree Of Freedom/Одна степень свободы) основан на использовании принципа Даламбера (D’Alembert’s), в основе которого лежат понятия демпфирование колебаний за счет вязкого трения и баланс усилий, которые действуют на массу/тело в процессе его движения (рис. 2.1).

\[m \cdot \ddot{u}(t) + c \cdot \dot{u}(t) + k \cdot u(t) = p(t), \]

где, \(u(t), \dot{u}(t), \ddot{u}(t) \) – перемещения, скорость, ускорение;
\(k, c, m \) – жесткость, демпфирование колебаний, масса;
\(p(t) \) – внешнее воздействие на систему с одной степенью свободы.
Довольно часто бывает так, что это же уравнение преобразуется в уравнение в так называемой модальной форме:

\[
\ddot{u}(t) + 2\xi\omega \cdot \dot{u}(t) + \omega^2 \cdot u(t) = \frac{p(t)}{m},
\]

где, \(\omega = \sqrt{k/m}\) – собственная частота колебаний;
\(\xi = c/(2 \cdot m \cdot \omega)\) – демпфирование колебаний различных форм, которое является частью, так называемого, критического демпфирования колебаний.

Аналогичным образом получаем и главное линейное уравнение движения расчетной системы с несколькими степенями свободы (MDOF – Multi Degree Of Freedom/Несколько степеней свободы), которое выводится путем решения следующей системы связанных между собой дифференциальных уравнений второго порядка:

\[
M \cdot \dddot{u}(t) + C \cdot \dot{u}(t) + K \cdot u(t) = p(t),
\]

где, \(u(t), \dot{u}(t), \ddot{u}(t)\) – вектор перемещения, вектор скорости, вектор ускорения;
\(M, C, K\) – матрица масс, матрица демпфирования колебаний, матрица жесткости;
\(p(t)\) – параметр, зависящий от вектора действия нагружения.

Демпфирование масс и матрицы жесткости

В общем, все матрицы имеют одинаковую структуру. Не смотря на это, диагональный вид имеет только матрица масс и матрица демпфирования. Данный вид матриц применим в большинстве случаев и с небольшими погрешностями/ошибками, но он не может быть применён для отображения вращательных масс и кинематических ограничений, относящиеся к вращательным степеням свободы.

При создании последовательности матриц масс задействуется значительная часть оперативной памяти расчетной машины ПК, однако это способствует получению более точных результатов. Помимо этого, существует еще один недостаток. Может произойти нарушение принципа дискретного максимума системы, но только в том случае, когда в процессе расчетов были получены очень
маленькие значения периода колебаний. Для предотвращения подобного явления необходимо, чтобы значение периода не было меньше, чем значение времени, которое необходимо для прохода колебательной волны через отдельно рассматриваемый элемент расчетной системы.

Для решения всех вышеизложенных проблем, связанных с матрицами, программой предусмотрена команда **CTRL MCON**, которая отвечает за комбинирование матриц масс/жесткости конечно-элементной системы.

Динамическое загружение/Динамическое воздействие

Вектор загружения \(p(t) \) может быть выражен в виде суммы значений \(n_p \) и векторов загружений в различные моменты времени \(p_j(t) \), каждый из которых равен произведению пространственного вектора (форма нагрузки, режим/схема нагрузки) \(p_{0,j} \), которая не является временной функцией, и временной функции \(g_{p,j}(t) \).

\[
p(t) = \sum_{j=1}^{n_p} p_j(t) = \sum_{j=1}^{n_p} p_{0,j} \cdot g_{p,j}(t).
\]
(2.4)

Решение уравнений движения

Решение главных уравнений движения даже для расчетной системы с одной степенью свободы (SDOF) является очень сложной задачей. Лишь немногие задачи динамики могут быть решены аналитическим способом. Как правило, в большинстве случаев требуется применять численный метод решения. В последующих разделах будут рассмотрены лишь некоторые из возможных методов решения главных уравнений движения.
2.2 Прямые методы анализа устойчивости системы

2.2.1 Интеграл Дюамеля

Одним из способов определения реакции линейной системы SDOF на воздействие произвольного усилия, чье главное уравнение было описано выше (2.1), является интеграл Дюамеля:

\[
 u(t) = \frac{1}{m\omega_D} \int_0^t p(t) \cdot e^{-\xi\omega(t-\tau)} \cdot \sin[\omega_D(t - \tau)] \cdot d\tau, \quad (2.5)
\]

где, \(\omega_D = \omega\sqrt{1 - \xi^2} \) - круговая резонансная частота затухающих колебаний.

Применение такого метода решения линейных систем SDOF ограничено, так как он основан на принципе суперпозиции. Данный метод сравнительно часто используется для решения уравнения SDOF системы с целью определения ее (расчетной системы) спектра реакции на загружение. Вообще, подобного рода интеграл необходимо решать численным методом, но методы, используемые для его решения, не очень эффективны [6]. Более эффективные методы решения, относящиеся к численным методам решения дифференциальных уравнений движения, представлены в следующем подразделе данного руководства.

2.2.2 Интегрирование уравнений движения

В большинстве случаев, уравнения движения (2.6) решаются численным методом путем прямого интегрирования системы дифференциальных уравнений 2-го порядка. Для реализации подобного необходимо, во-первых, разделить все время воздействия на систему на дискретные временные участки/периоды \(t \in \{t_i, \ldots, t_n\} \), а затем, полученные уравнения движения непрерывной системы дискретизируется, т.e. преобразуются и записываются в дискретной форме в течение \(t_{i+1} \) ед. времени.

\[
 M \cdot \ddot{u}(t_{i+1}) + C \cdot \dot{u}(t_{i+1}) + K \cdot u(t_{i+1}) = p(t_{i+1}), \quad (2.6)
\]
где, 1, …, n-1, \(t_{i+1} = t_i + \Delta t \) – временные периоды (величина \(\Delta t \), как правило, имеет постоянное значение).

Рассматриваемый метод решения уравнений движения связан с проблемой его применения для конкретного временного участка \(t_{i+1} \) на основе уже известного результата решения на дискретном временном участке, то есть \(t \leq t_i \), с учетом начальных условий задачи. Как было упомянуто ранее, решение может быть найдено путем интегрирования дифференциальных уравнений, полученные интегральные уравнения представлены ниже (для простоты были опущены векторные обозначения):

\[
\ddot{u}(t_{l+1}) = \ddot{u}(t_l) + \int_0^{\Delta t} \ddot{u}(\tau)d\tau \\
\dot{u}(t_{l+1}) = \dot{u}(t_l) + \int_0^{\Delta t} \dot{u}(\tau)d\tau
\]

Уравнения 2.7а и 2.7б описывают скорость и перемещения в системе в конце временного шага \(\Delta t = t_{i+1} - t_i \) с учетом уже известных значений, полученных при расчете в начале временного шага \(\ddot{u}(t_l) \) и \(\dot{u}(t_l) \) с добавлением интегральных величин. Очевидно, что для того, чтобы получить решение уравнений движения в момент времени \(t_{i+1} \) мы должны предположить, как будет изменяться значение ускорения \(\ddot{u}(\tau) \) в пределах рассматриваемого временного периода.
Рис. 2.2 – Графики изменения среднего ускорения (слева) и линейного ускорения (справа)

Самым простым предположением, касающимся изменения значения ускорения, будет считаться неизменное или постоянное его значение на каждом временном интервале нагружения расчетной системы (рис. 2.2, слева). Однако более точно процесс изменения ускорения описывается по линейному закону (рис. 2.2, справа).

\[
\ddot{u}(\tau) = \dot{u}(t_l) + \frac{\tau}{\Delta t} \cdot [\ddot{u}(t_{l+1}) - \ddot{u}(t_l)]. \tag{2.8}
\]

Согласно методу Ньюмарк, который также имеет название метод обобщенного ускорения, следующие математические выражения справедливы для описания скорости и перемещений в конце временного интервала \(\Delta t\):

\[
\dot{u}(t_{l+1}) = \dot{u}(t_l) + \Delta t \cdot [(1 - \delta) \cdot \ddot{u}(t_l) + \delta \cdot \ddot{u}(t_{l+1})], \tag{2.9a}
\]
\[
u(t_{l+1}) = u(t_l) + \Delta t \cdot \dot{u}(t_l) + \Delta t^2 \cdot [(1/2 - \beta) \cdot \ddot{u}(t_l) + \beta \cdot \ddot{u}(t_{l+1})], \tag{2.9b}
\]
Проектировщику дана возможность выбора между пятью различными способами интегрирования уравнений движения / решения уравнений движения, основным различием между которыми является момент времени $t_i + \theta \cdot \Delta t$, в который система находится в состоянии равновесия (выполняется условие равновесия системы):

![Процесс интегрирования уравнений движения](image)

Рис. 2.3 – Интегрирование по времени – α и метод Уилсона – θ (Wilson-θ)

Явное интегрирование ($\theta = 0,0$)

Так как изменение значения ускорения относительно рассматриваемого временного периода линейно и постоянно (рис. 2.3), то используя матрицу масс, пользователь достаточно быстро может получить все необходимые уравнения движения, описывающие работу системы. Данный метод хорошо подходит при распараллеливании решения задачи, но только при условии стабильности системы, если рассматриваемый временной шаг меньше некоторого критического значения, которое приблизительно равно скорости прохода волны, разделенной на минимальный размер ячейки конечно-элементной модели.

Метод Ньюмарка ($\theta = 1,00, \delta \geq 0,50, \beta \geq 0,25(0,50 + \delta)^2$)

По умолчанию для параметров не задано числовое демпфирование. Учитывая этот факт, в систему будут накапливаться некритичные для дальнейшей работы с моделью ошибки, особенно это касается значений ускорений. Чтобы
избежать подобного необходимо увеличить значение параметра δ. «В литературных источниках параметр δ обозначается как γ».

Метод Уилсона – θ ($\theta \geq 1,37$)

Данный метод представляет собой модифицированный метод Ньюмарк, где демпфирование параметров системы способствует увеличению значения периода колебаний в значительной степени, но при этом сохраняется значение амплитуды колебаний, что обеспечивает более высокую точность расчета (рис. 2.3). В литературных источниках параметр β обозначается как α, однако это было изменено, чтобы у читателя не возникло каких-либо ассоциаций и противоречий при рассмотрении следующего метода.

α – Метод Гилбера-Хьюза-Тейлора ($\theta < 1,00$, $\delta = (1 - 2\alpha) / 2$, $\beta = (1 - \alpha^2) / 4$)

Этот метод (рис. 2.3) была разработан с целью введения демпфирования параметров системы без последующего ухудшения точности расчета. Данный метод подходит для решения нелинейных задач динамики. Значение α зависит от значения θ: $\alpha = (\theta - 1,0)$. Подытожив, мы имеем метод, который формально эквивалентен методу Кранка-Николсона, который в численном моделировании является одним из методов конечных разностей и используется для решения уравнений теплопроводности систем (см. руководство к модулю HYDRA), и подобных дифференциальных уравнений.

Модальный анализ

Процесс решения системы уравнений, полученной в процессе моделирования расчетной системы, можно значительно упростить, если поиск соответствующего решения будет происходить в подпространстве нескольких собственных векторов. Это значит, что сложный и многоэтапный процесс решения системы уравнений движения необходимо разбить на более простые промежуточные этапы их решения. Для применения данного метода требуется знание собственных значений и собственных векторов, вычисление которых является объемной и сложной работой. Данный способ обеспечивает точность интегрирования линейных уравнений на высоком уровне (максимальная
точность). Нелинейные явления/эффекты могут быть рассмотрены в упрощенном виде, если при данной форме колебаний системы возможны нелинейные перемещения.

В результате использования неявного метода интегрирования в момент \(t_i + \Delta t \) создается система уравнений, описывающая перемещения или ускорения в расчетной системе. Его отличием от явного метода является значение временного шага, которое может быть значительно больше. Специфические ошибки/погрешности (колебания) также могут быть введены в систему, но только при небольшом значении временного шага с согласованной матрицей масс.

Для получения дополнительной информации о методах интеграции уравнений воспользуйтесь дополнительной литературой.

2.3 Модальный анализ устойчивости системы

2.3.1 Модальная декомпозиция

Для линейной системы, вектор перемещения \(u(t) \) системы с \(n \) количеством степеней свободы можно представить в виде суперпозиции (суммы/наложения) его модальных составляющих (модальная декомпозиция):

\[
\mathbf{u}(t) = \sum_{k=1}^{n} \mathbf{u}_k(t) = \sum_{k=1}^{n} \mathbf{\phi}_k \cdot q_k(t) = \mathbf{\Phi} \cdot \mathbf{q}(t),
\]

где, \(\mathbf{u}_k(t) \) — модальная составляющая вектора перемещения \(u(t) \) (\(k \)-ая составляющая);
\(\mathbf{\phi}_k \) — \(k \)-ая форма собственных колебаний (свойственный вектор);
\(q_k(t) \) — обобщенное модальное перемещение (координата) при \(k \)-ой форме колебаний (значение модальной координаты при реакции системы на загружение);
\(\mathbf{\Phi} \) — матрица форм колебаний, \(\mathbf{\Phi} = [\phi_1 \ldots \phi_n] \);
\(\mathbf{q}(t) \) — вектор обобщенных модальных координат, \(\mathbf{q}(t) = [q_1(t) \ldots q_n(t)]^T \).
Другими словами, вектор перемещения \(u(t) \) был выражен в виде произведения линейной независящей от времени комбинации собственных векторов \(\phi_k \) и скалярной величины \(q_k(t) \).

Если в уравнение динамики 2.6 \(MDOF \) системы подставить уравнение 2.10, а затем перемножить получившееся выражение на \(\Phi^T \), то мы получим следующее:

\[
\Phi^T \cdot M \cdot \Phi \cdot \ddot{q}(t) + \Phi^T \cdot C \cdot \Phi \cdot \dot{q}(t) + \Phi^T \cdot K \cdot \Phi \cdot q(t) = \Phi^T \cdot p(t). \tag{2.11}
\]

На первый взгляд, уравнение 2.11 очень похоже на уравнение 2.6. Однако, при определенном выборе собственных векторов \(\Phi \), матрицы \(\Phi^T \cdot M \cdot \Phi \), \(\Phi^T \cdot C \cdot \Phi \) и \(\Phi^T \cdot K \cdot \Phi \) станут диагональными, что, в свою очередь, означает, что система СВЯЗАННЫХ между собой дифференциальных уравнений движения второго порядка будет преобразована в систему НЕСВЯЗАННЫХ между собой дифференциальных уравнений движения второго порядка.

2.3.2 Определение собственных значений

Один из способов определения собственных векторов \(\Phi \) основан на разъединении уравнений движения для свободно колеблющихся недемпфированных расчетных систем.

\[
M \cdot \ddot{u}(t) + K \cdot u(t) = 0. \tag{2.12}
\]

Решение данного уравнения имеет вид гармонической функции.

\[
u(t) = \phi \cdot \sin(\omega t + \varphi). \tag{2.13}\]

Если уравнение 2.13 подставить в уравнение 2.12, то в результате мы получим решение задачи, связанной с определением собственных значений системы.

\[
[K - \omega^2 M] \phi = 0; \tag{2.14}
\]
где, \(\omega \) – круговая частота собственных колебаний;
\(\phi \) – форма собственных колебаний;
\[\lambda = \omega^2 \] – собственное значение.

Это множество \(n \)-ых однородных алгебраических уравнений имеет нетривиальное решение при следующем условии:

\[\text{det}[K - \omega^2 M] = 0. \] (2.15)

Это уравнение имеет \(n \) корней \(\{\omega_1, \ldots, \omega_n\} \), каждый из которых характеризует круговую частоту собственных колебаний для соответствующей \(n \)-ой формы колебаний. После определения значения круговой частоты собственных колебаний \(\phi_k \) можно, используя уравнение 2.14, определить соответствующий определенной круговой частоте и форме колебаний собственный вектор.

Вычисление собственных значений системы осуществляется при помощи единовременной обратной векторной итерации либо с использованием метода Ланцоша. Запуск алгоритма поиска собственных форм колебаний \(\phi_k \) и собственных значений не возможен без коэффициента или числа Рэлея.

\[\omega_i^2 = \frac{\Phi_i^T K \Phi_i}{\Phi_i^T M \Phi_i}. \] (2.16)

Одним из преимуществ такого подхода к решению является то, что при дублировании собственных значений они не накладываются друг на друга и в результате обеспечивается высокая точность результатов.

Примечание

Из уравнения 2.14 видно, что значение абсолютной амплитуды векторов \(\Phi_k \) не известно. Известна же только форма векторов. Другими словами, если вектор \(\Phi_k \) является собственным вектором, удовлетворяющий условия уравнения 2.14, то вектор \(\alpha \cdot \Phi_k \) также будет являться собственным вектором, где \(\alpha \) является реальной скалярной величиной отличной от нуля.

Очень важным свойством собственных векторов является то, что они удовлетворяют следующим условиям ортогональности:

\[\Phi_i^T \cdot M \cdot \Phi_j = 0, \quad i \neq j; \] (2.17а)
\[\phi_i^T \cdot K \cdot \phi_j = 0, \quad i \neq j; \quad (2.176) \]

2.3.3 Модальный расчет обобщенной SDOF системы

Исключительной особенностью при изучении данного вопроса является то, что в большинстве случаев все важнейшие свойства конструкции могут быть описаны несколькими собственными формами и, как правило, они имеют наименьшие собственные значения. Для решения поставленной задачи может быть использована проекция образовавшегося векторного/линейного пространства. При выборе рассматриваемого способа решения, количество составляющих \(n \) в уравнении 2.10 может иметь очень маленькое значение, но это при условии, если местные/локальные реакции расчетной системы не будут определяющими.

Учитывая условия 2.17 можно преобразовать уравнение 2.10 в скалярное уравнение SDOF системы при \(k \)-ой форме колебаний.

\[\phi_k^T \cdot M \cdot \phi_k \cdot \ddot{q}_k(t) + \phi_k^T \cdot C \cdot \phi_k \cdot \dot{q}_k(t) + \phi_k^T \cdot K \cdot \phi_k \cdot q_k(t) = \phi_k^T \cdot p(t); \quad (2.18) \]

Свойство ортогональности позволило преобразовать связанную систему уравнений динамики расчетной системы в несвязанную.

Примечание

Для того, чтобы разъединить уравнения движения расчетной системы с затуханием колебаний необходимо, чтобы демпфирующая матрица \(C \) была такой, чтобы при умножении на нее \(\Phi^T \cdot C \cdot \Phi \) матрица стала диагональной. Какой должна быть матрица \(C \), чтобы это стало возможным, объясняется в разделе 2.3.4 данного руководства.

При упрощении уравнения 2.18 получается следующее:

\[m_k \cdot \dddot{q}_k(t) + c_k \cdot \ddot{q}_k(t) + k_k \cdot q_k(t) = p_k(t); \quad (2.19) \]
где свойства обобщенной SDOF расчетной системы при k-ой форме колебаний рассчитываются по следующим формулам:

\[m_k = \phi_k^T \cdot M \cdot \phi_k \] – обобщенная модальная масса при k-ой форме колебаний системы;

\[c_k = \phi_k^T \cdot C \cdot \phi_k \] – обобщенное модальное демпфирования при k-ой форме колебаний системы;

\[k_k = \phi_k^T \cdot K \cdot \phi_k \] – обобщенная модальная жесткость при k-ой форме колебаний системы;

\[p_k(t) = \phi_k^T \cdot p(t) \] – обобщенная модальная нагрузка при k-ой форме колебаний системы.

Примечание

В ПК SOFiSTiK собственные вектора \(\phi_k \) нормированы таким образом, что обобщенная модальная масса \(m_k \) равна 1 при каждой форме собственных колебаний расчетной системы \(k \), т.е. имеется в виду:

\[m_k = \phi_k^T \cdot M \cdot \phi_k = 1. \] (2.20)

Вследствие этого, обобщенная модальная жесткость \(k_k \) определяется по формуле:

\[k_k = \phi_k^T \cdot K \cdot \phi_k = \omega_k^2. \] (2.21)

Если учесть уравнение 2.4, то формулу для расчета обобщенной модальной нагрузки при k-ой форме колебаний системы можно преобразовать в следующий вид:

\[p_k(t) = \phi_k^T \cdot p(t) = \sum_{j=1}^{n_p} \phi_k^T \cdot p_j(t) = \sum_{j=1}^{n_p} \phi_k^T \cdot p_{0,j} \cdot g_{p,j}(t) = \]

\[= \sum_{j=1}^{n_p} p_{0,kj} \cdot g_{p,j}(t) = \sum_{j=1}^{n_p} p_{kj}(t); \] (2.22)

где, \(p_{kj}(t) = p_{0,kj} \cdot g_{p,j}(t) \) (2.23) – обобщенная нагрузка k-ой формы колебаний, соответствующая функции нагружения \(j \). где \(p_{0,kj} \) (2.24) является

\[p_{0,kj} = \phi_k^T \cdot p_{0,j}; \] (2.24)
$p_{0,kj}$ (2.24) является коэффициентом преобразования нагрузки в k-ой форме колебаний расчетной системы в функции нагружения j (2.22).

«Значения коэффициента преобразования нагрузки $p_{0,kj} = \phi_k^T \cdot p_{0,j}$ берутся из таблицы 3.33 данного руководства».

Разделив уравнение 2.22, получится следующее:

$$\ddot{q}_k(t) + 2\xi\omega_k \cdot \dot{q}_k(t) + \omega_k^2 \cdot q_k(t) = \frac{q_k(t)}{m_k}; \quad (2.25)$$

где, $\omega_k = \sqrt{\frac{k_k}{m_k}}$ – круговая частота незатухающих собственных колебаний формы k;

$\xi_k = \frac{c_k}{2m_k \omega_k}$ – коэффициент вязкостного демпфирования расчетной системы при форме колебаний k.

2.3.4 Расчет модального демпфирования

Если в системе наблюдается затухание колебаний, то их собственные значения становятся комплексными числами с независимой мнимой частью. Однако в использовании подобных комплексных собственных значениях нет особой необходимости. Почти во всех случаях пользователь может использовать реальные/действительные собственные значения. Формально, представление расчетной системы в виде собственного вектора является простым ее преобразованием в другом векторном пространстве (плоскости). Для того чтобы матрица демпфирования тоже стала диагональной, пользователю необходимо выбрать такое значение демпфирования, чтобы оно было соразмерно/пропорционально матрице массе и/или матрице жесткости:

$$C = a \cdot M + b \cdot K. \quad (2.26)$$
Когда используется уравнение 2.26, полученное в результате демпфирования различных форм колебаний ξ (коэффициент затухания Лера), матрица демпфирования также будет диагональной:

$$
\xi_k = \frac{1}{2} \left[\frac{a}{\omega_k} + b \cdot \omega_k \right] = \frac{\delta_k}{2\pi}
$$

(2.27)

В сложной системе отдельные элементы могут иметь совершенно разные демпфирующие свойства. Пропорциональное демпфирование более уже не используется и матрица демпфирования C не становится диагональной матрицей. Подобное должно быть учтено при интеграции модальных уравнений. Но так как в большинстве случаев значение демпфирования мало, а демпфирующие свойства являются наиболее неопределенными свойствами материала в общих процессах работы системы, то вместо демпфирования можно использовать его энергетический эквивалент.

2.3.5 Решение уравнений различных форм колебаний

Уравнение 2.25 SDOF системы может быть решено аналитическим методом (если такое решение существует) или методом интеграла Диоамеля, который является наиболее распространенным методом численного интегрирования, или любым другим методом численного интегрирования, которые были описаны в разделе 2.2.2 данного руководства. Результатом решения уравнения 2.25 является значение модальной координаты при отклике/реакции $q_k(t)$ SDOF системы для каждой k-ой формы колебаний с течением времени3.

«3Максимальные значения модальных координат max$|q_k(t)|$ отображены в таблице 3.37».

После решения уравнения 2.25 значение общего перемещения при реакции SDOF системы может быть получено при помощи обратного преобразования
данной функции из модальной формы в физическое пространство, используя уравнение 2.10, которое для большего понимания приведено ниже повторно:

\[u(t) = \sum_{k=1}^{n} u_k(t) = \sum_{k=1}^{n} \phi_k \cdot q_k(t) = \Phi \cdot q(t). \]

(2.28)

На самом деле, абсолютно любые реакции \(R(t) \) системы (например, усилия в поперечном сечении, напряжения и т.д.) могут быть получены при помощи линейного комбинирования соответствующего модального значения реакции \(R_{k0} \) и ее модальной координаты \(q_k(t) \).

\[R(t) = \sum_{k=1}^{n} R_k(t) = \sum_{k=1}^{n} R_{k0} \cdot q_k(t); \]

(2.29)

gде, \(R_k(t) \) – \(k \)-ый вид реакции системы, являющийся одним из составляющих от значения реакции \(R(t) \).

Модальные значения реакций \(R_{k0} \) системы являются величинами, которые соответствуют собственному вектору перемещений \(\phi_k \). Они определяются при помощи стандартного МКЭ в процессе расчета собственных значений и собственных векторов системы, которые напрямую зависят от собственного вектора перемещений \(\phi_k \). Данный подход, который описан выше, заложен в работу ПК SOFiSTiK.

Существует еще один способ определения величины реакции \(R(t) \) системы. После определения значения \(k \)-ой модальной координаты реакции \(q_k(t) \) мы можем в каждый рассматриваемый момент времени \(t \) вычислить характерные для данного \(k \)-ого случая внутренние силы упругости \(f_k(t) \).

\[f_k(t) = K \cdot u_k(t) = K \cdot \phi_k \cdot q_k(t). \]

(2.30)

Есть и альтернативный способ, который заключается в использовании собственных значений, полученных при решении уравнения 2.14 (п.п. 2.3.2). Имеется в виду, что усилия в элементе, возникающие в результате колебаний, могут быть выражены при помощи матрицы масс \(K \phi \cdot \omega^2 M \phi_k \).

\[f_k(t) = M \cdot \phi_k \cdot [\omega^2 \cdot q_k(t)]. \]

(2.31)
Выполнив статический анализ системы на определенном временном промежутке ее работы и, воспользовавшись полученными значениями усилий в качестве внешних сил, на выходе получим реакцию системы $R_d(t)$ для конкретного k-ого случая колебаний.

$$R(t) = \sum^n_{k=1} R_k(t);$$ \hspace{1cm} (2.32)

Суммируя все полученные $R_d(t)$, на выходе получаем общее значение всех реакций, возникающих в расчетной системе в рассматриваемый момент времени t. Усилия, посчитанные при помощи формул 2.30 или 2.31, называются эквивалентными модальными усилиями или эквивалентными усилиями, соответствующие определенной форме колебаний (эквивалентный вектор модальных нагрузок).

Преимущество подхода, заложенного в работу ПК SOFiSTiK, над подходом, используемый эквивалентные модальные усилия, заключается в том, что количество дополнительных операций, которые необходимо произвести, чтобы вычислить общее значение реакций $R(t)$ системы путем введения новых случаев загружения, достаточно мало. Все, что необходимо сделать при использовании данного подхода для расчета значения модальной координаты $q_k(t)$ реакции системы от введенного в нее нового случая загружения, это произвести наложения всех реакций системы (суперпозиция), используя уравнение 2.29.

2.4 Модальный анализ колебаний для гармонического возбуждения

Если загружение системы рассматривается как гармоническое возбуждение, то решение модального обобщенного уравнения 2.19 $SDOF$ системы может быть получено в аналитической форме (2.33), где p_0 – амплитудное значение, а Ω_p - частота изменения возмущающей нагрузки.

$$p(t) = p_0 \cdot \sin(\Omega_p \cdot t - \varphi_p);$$ \hspace{1cm} (2.33)
Общее решение дифференциального уравнения включает в себя решение однородного уравнения (ОРОУ, \(q _k, h \)), т.е. уравнения, описывающего свободные колебания системы, и частное решение (ЧР; \(q _k, p \)) неоднородного уравнения, т.е. уравнения, описывающего стационаярные или, точнее будет сказать, гармонические колебания. При демпфировании расчетной системы (колебания абсолютно во всех реальных механических системах со временем затухают) переходный участок колебаний (свободные колебания) со временем затухают и в зависимости от уровня демпфирования, они будут затухать только после пары циклов колебаний (рис. 2.4).

Рис. 2.4 – Графики движения при действии вибрационной нагрузки для случаев:

а) \(\omega > \Omega \); б) \(\omega < \Omega \)

Через некоторое время устанавливаются независимые от начальных условий гармонические колебания с частотой \(\omega_k \).

\[
q_{k,p}(t) = q_{0,k,p} \cdot \sin(\Omega_p \cdot t - \varphi_k) = q_{k,st} \cdot R_D(\eta_k) \cdot \sin(\Omega_p \cdot t - \varphi_k); \quad (2.34)
\]

где, (смотри также уравнение 2.24)

\[
q_{k,st} = \frac{p_{0,k}}{k} = \frac{\phi_k^T p_0}{\omega_k^2 m}; \quad (2.35a)
\]

\[
\eta_k = \frac{\Omega_p}{\omega_k}; \quad (2.35b)
\]
\[R_D(\eta_k) = \frac{q_{0,k,p}}{q_{k,\text{st}}} = \frac{1}{\sqrt{(1-\eta_k^2)^2 + (2\xi_k \eta_k)^2}}; \]

(2.35в)

\[\varphi_k(\eta_k) = \varphi_p + \arctan \left(\frac{2\xi_k \eta_k}{1-\eta_k^2}\right); \]

(2.35г)

\(q_{k,\text{st}}\) – деформации от статической нагрузки;

\(\eta_k\) – отношение частоты изменения возмущающей нагрузки системы к собственной частоте;

\(\varphi\) – фазовый угол, представляющий разность фаз между установившимся вынужденными колебаниями и возмущающей силой, \(k\)-ой формы колебаний обобщенной SDOF системы;

\(q_{0,k,p}\) - амплитуда гармонических колебаний;

\[\frac{q_{0,k,p}}{q_{k,\text{st}}} = R_D(\eta_k) \] – коэффициент динамичности (Применяется для оценки влияния частоты возмущающей силы. Так же он показывает во сколько раз амплитуда вынужденных колебаний больше статического отклонения.).

Параметры \(R_D(\eta)\) и \(\varphi(\eta)\) показаны на рисунке 2.5.

Коэффициентом динамичности \(R_D(\eta)\) называется отношение амплитуды гармонических/вынужденных колебаний \(q_{0,k,p}\) к деформации от статически приложенной нагрузки \(q_{k,\text{st}}\). На рисунке 2.5 показаны графики \(R_D(\eta)\) как функции отношения \(\frac{\varphi_p}{\omega_k}\) при различных параметрах затухания, позволяющие сделать следующие выводы:

- Сближение частоты возмущающей силы и собственной частоты системы влечет к значительному росту амплитуды вынужденных колебаний.

- При совпадении частоты возмущения с собственной частотой, т.е. при резонансе, полученное решение показывает, в случае консервативной системы \(R_D(\eta) = \frac{1}{1-\eta_k^2}\), неограниченный рост перемещений. На самом деле этого не происходит, что объясняется тем, что само линейное уравнение описывает лишь малые колебания, при значительных перемещениях
восстанавливающие силы становятся существенно нелинейными, и движение описывается нелинейным уравнением, при этом амплитуда колебаний может достигать больших значений, оставаясь конечной величиной.

- Учет сил вязкого сопротивления заметно влияет на величину коэффициента динамичности лишь в окolorезонансной зоне и, следовательно:
 - в удалении от резонанса можно использовать значение \(R_D(\eta) \), полученные без учета вязкого сопротивления;
 - во всей окolorезонансной зоне можно принимать \(R_D(\eta) = R_{Dрезонанс}(\eta) \).

- При наличии вязкого сопротивления:
 - увеличение коэффициента вязкого сопротивления приводит к уменьшению динамического коэффициента;
 - затухание обеспечивает конечную амплитуду при резонансе;
 - точка максимума амплитуды не совпадает с состоянием резонанса, а смещена в сторону \(\Omega < \omega \).

- В зарезонансной зоне:
 - наблюдается уменьшение величины динамического коэффициента и приближение к оси абсцисс: перемещения оказываются меньше, чем статические;
 - перемещения незначительны, но опасны для человеческого организма.

- Стремление избежать возникновения резонанса имеет следующие пути реализации: увеличение собственной частоты за счет изменения массы и жесткости [4].
Рис. 2.5 – Увеличение коэффициента динамичности системы и фазовый угол, описывающие затухающую систему, возбужденную гармонической нагрузкой

Рассматриваемые функции характеризуют истинную/реальную реакцию системы на нагружение, в том числе сдвиг резонансного пика, возникающий из-за эффектов демпфирования. Все частоты, используемые модулем DYNA при динамическом анализе, характеризуют только незатухающие колебания системы.

Свободные колебания могут возникать на основе нулевых начальных условий в нескольких дополнительных компонентах системы. Наложение этих колебаний приводит к возникновению плавающего эффекта, который может быть замечен в расчетной системе при ее интегрировании по времени. Если данный эффект будет неблагоприятно воздействовать на расчетную систему, то модуль DYNA абсолютно в любом порядке может опустить или учесть влияние какого-либо компонента анализируемой системы.
Точный расчет максимальных напряжений с учетом сдвига фаз может выполняться только в конце затухания неустановившихся колебаний (свободных колебаний), пренебрегая их составляющими. В противном случае, как и в случае с возбуждением спектров колебаний, будет произведено суммирование их (напряжений) статических значений.

2.5 Расчет по спектральным кривым (спектральный метод расчета)

Динамическое воздействие на систему, будучи детерминированным, может быть вызвано спектром ускорений или спектральной кривой. Функция данной кривой представляет собой зависимость максимального ускорения масс от периода собственных колебаний системы. Из функции зависимости нагрузки от времени могут быть построены спектральные кривые, либо энергетические спектры (спектр колебаний, в котором величинами, характеризующими гармонические составляющие колебаний, являются квадраты амплитуд скорости, характеризующие удельную энергию рассматриваемых составляющих). Данный метод расчета используется для анализа ветровых воздействий и волновых явлений, возникающих в элементах системе. Но наибольшее распространение данный метод получил при использовании его в анализе воздействий землетрясений на систему [4].

2.5.1 Спектры колебаний при землетрясениях (акселерограмма землетрясений)

Если известна функция ускорения $\ddot{u}_g(t)$, то решение уравнения движения может быть получено при помощи численного интегрирования (см. п.п. 2.2 данного руководства). На практике в большинстве случаев рассматриваемое сейсмическое возбуждение имеет вид акселерограммы землетрясений с упругими
и неупругими соударениями в расчетной системе. Акселерограмма землетрясения представляет собой сложную нерегулярную кривую, которая не поддается математической аппроксимации. Максимальное значение реакции SDOF системы на подобное нагружение представлено в виде следующего выражения:

\[
\max |D_k^{EQX}(t)| = S_D^{EQX}(T_k, \xi_k) = S_{D,k}^{EQX}; \quad (2.36a)
\]

\[
\max |A_k^{EQX}(t)| = S_{pA}^{EQX}(T_k, \xi_k) = S_{pA,k}^{EQX}; \quad (2.36b)
\]

где, \(S_{D}^{EQX}(T_k, \xi_k) \) – относительное перемещение при заданной акселерограмме землетрясений;
\(S_{pA}^{EQX}(T_k, \xi_k) \) – реальное значение ускорения соответствующее выбранному участку \(k \) на акселерограмме землетрясения при решении задачи движения SDOF системы.

Если значение затухания колебаний меньше реального значения ускорения соответствующей акселерограммы \(S_{pA}^{EQX}(T_k, \xi_k) \), то проектировщик может воспользоваться инструментальной или синтезированной акселерограммой, которая определяет закон движения грунта на свободной поверхности площадки строительства и предоставляются, как правило, специализированными организациями [3].

\[
S_{pA}^{EQX}(T_k, \xi_k) \approx \omega_k^2 \cdot S_D^{EQX}(T_k, \xi_k). \quad (2.37)
\]

Измерение напряжений и усилий, возникающих в конструкции при перемещениях, значения которых соответствуют выбранной синтезированной акселерограмме, производится при реальных значениях ускорений, т. е. тех ускорений, значения которых были получены в процессе эмпирических измерений при помощи сейсмостанций. Таким образом, абсолютно любая акселерограмма (даже реальная), которая была выбрана пользователем в качестве расчетной, всегда будет восприниматься системой, как синтезированная или инструментальная.
Примеры спектральной кривой, на которой отображена зависимость коэффициента динамичности $\beta = S_{pA}^{EQX}(T, \xi)/a_g$, где a_g – ускорение соответствующее балльности землетрясения, определяемое коэффициентом сейсмичности, от периода собственных колебаний системы (2.6а), и спектральной кривой, описывающей зависимость относительных перемещений $S_D^{EQX}(T, \xi)$ от периода собственных колебаний системы (2.6б), представлены на рисунке 2.6.

а) Спектральная кривая зависимости коэффициента динамичности от периода собственных колебаний системы

б) Спектральная кривая относительных перемещений

Рис. 2.6 Характерные спектральные кривые
2.5.2 Анализ спектра ветрового воздействия

Для анализа воздействия ветра на систему существуют различные кривые энергетических спектров, которые могут быть заданы при помощи некоторых параметров в модуле SOFILOAD: RESP. Для анализа или расчете конструкций частота основного нагружения находится в диапазоне от 0,1 до 1,0 Гц. Наиболее известным энергетическим спектром ветрового воздействия является спектр Кармана.

![Кривая энергетического спектра ветрового воздействия Кармана](image)

Рис. 2.7 – Кривая энергетического спектра ветрового воздействия Кармана

Значение реакции, полученное в результате ветрового воздействия, является одновременно фоновой и резонансной характеристикой системы. В момент, когда значение коэффициента динамичности берется из нормированной кривой энергетического спектра, фоновая характеристика всегда будет равна 1,00, так как это позволит обеспечить некую надежность и будет более уместным на случай, когда эффект когерентности (согласованности) учтен при нагружении системы.

\[q = \sqrt{1 + \frac{\pi^2}{2\delta} \cdot \frac{f \cdot S}{\sigma^2}}. \]

\[\frac{f \cdot S}{\sigma^2} = \frac{a_1 \cdot X + a_2 \cdot X^2 + a_3 \cdot X^3}{(1 + b \cdot X^c)^d}. \]

\[X = \frac{f}{f_m} = \frac{f \cdot L}{v} \text{ или } \frac{f \cdot z}{v}. \]
2.5.3 Наложение максимальных значений реакций системы (суперпозиция)

Значения максимальных перемещений и напряжений должны быть наложены (суперпозиция) друг на друга в соответствии с теорией вероятности. Для достижения поставленной цели могут использоваться следующие методы: метод CQC/метод Уилсона (Полно-квадратичная комбинация – правило суммирования, основанное на предположении, что случайный процесс сейсмических колебаний представляет собой «белый шум» бесконечной длительности); метод суммирования абсолютных значений; метод SRSS (Квадратный корень из суммы квадратов составляющих). Метод SRSS, в случае его применения при нескольких собственных значениях системы, выдает достаточно серьезную погрешность, но это не значит, что метод CQC является гарантом в получении правильных и максимально приближенных к реальным значениям результатов. Необходимо учесть и то, что без учета демпфирования различных форм колебаний, в результате применении метода суммирования SRSS образуются различные значения, но только при нескольких собственных значениях системы.

\[R = \sqrt{\sum \sum R_i \cdot \rho_{ij} \cdot R_j}. \] (2.41а)

\[\rho_{ij} = \frac{8 \xi_i \xi_j (\xi_i + \eta_{ij} \xi_j) \eta_{ij}^{3/2}}{(1-\eta_{ij}^2)^2+4\xi_i \xi_j \eta_{ij} (1+\eta_{ij}^2)+4(\xi_i^2+\xi_j^2)\eta_{ij}^2}. \] (2.41б)

\[\eta_{ij} = \frac{\omega_j}{\omega_i}. \] (2.41в)

На примере приложения сдвигового усилия к квадратичному сегменту можно легко показать, насколько серьезная погрешность возникает при использовании метода суммирования SRSS. Ускорение, приложенное к сегменту в направлении оси X, раскладывается на две собственные формы или составляющие (касательное и нормальное ускорение), значение которых составляет всего лишь 25% от общего значения сдвига (рис. 2.8).
Метод SRSS распределяет приложенное ускорение при сдвиге по 35% на каждую из 4-х сторон квадратичного сегмента, в то время как метод CQC 50% от общего значения ускорения приложит к сторонам, расположенным вдоль оси X, и 0% к сторонам, расположенным вдоль оси Y, что будет являться наиболее правильным вариантом разложения ускорения. Если пользователю потребуется максимальные значения в углах сегмента, то для этого ему потребуется абсолютно другая целевая функция. Случаев загружения max-My, min-My, max-Mz, min-Mz будет недостаточно для получения подобных результатов.

2.5.4 Знак соответствующих усилий и моментов

При каждом типе суперпозиции, не считая положительные значения, знаком соответствующих усилий и моментов не следует пренебрегать. Хотя, довольно часто приходится использовать только положительные значения всех полученных результатах расчета, что изначально неверно и экономически невыгодно.

Например, рассмотрим плоскую горизонтально загруженную раму. Внутренние усилия и моменты, возникающие в ней, меняются в зависимости от знака горизонтально приложенной силы, однако, необходимо учесть тот факт, что знаки момента и продольного усилия в одной из колон должны быть одинаковыми, в то время как в другой колоне они должны быть разными.
Если пользователь пытается определить максимальный момент, то связанные с ними продольные усилия должны иметь разные знаки. Именно это стоит помнить при анализе форм колебаний. Если требуется собрать все максимальные моменты соответствующих форм колебаний, то пользователю при добавлении других форм колебаний необходимо учитывать их влияние на систему в полном объеме с учетом глобального фактора. Если пользователю покажется необходимым добавить абсолютные значения (модуль) усилий и моментов, то достаточно, чтобы все формы колебаний, которые когда-либо добавлялись или удалялись из расчетной системы, соответствовали знаку ведущей силы. Таким образом, пользователь может преобразовать правило комбинирования общего вида (2.42) для определения вектора внутренних усилий и для максимального значения усилия J (2.43).

$$SUM_j = \sum_i |S_{ij}|. \tag{2.42}$$

$$SUM = \sum_i f_i \cdot S_i ; \; f_i = \begin{cases} +1, & s_{ij} \geq 0 \\ -1, & s_{ij} < 0 \end{cases}. \tag{2.43}$$

То же самое может быть использовано и для метода SRSS (2.44) с соответствующими преобразованиями (2.45).

$$SUM_j = \sqrt{\sum_i |S_{ij}|^2}. \tag{2.44}$$

Рис. 2.9 – Схема горизонтально нагруженной рамы
\[SUM = \sum_i f_i \cdot S_i; \quad f_i = \frac{s_j}{\sqrt{\sum_i s_{ij}^2}} \] (2.44)

И последнее, но не менее важным является то, что тоже самое может быть сделано и для CQC метода. В любом случае ведущее значение усилия будет положительным, следовательно, оно должно быть введено в качестве переменной нагрузки в окончательном расчете суперпозиции. Тот же метод может быть использован и для суперпозиции усилий, действующих в наиболее неблагоприятном для системы направлении. За один рабочий цикл в модуле DYNА в сочетании с методом SRSS могут быть проанализированы три случая загружения LC с ускорениями, действующими в ортогональных (взаимно перпендикулярных) направлениях. Определение правильного знака соответствующих усилий позволит получить правильные результаты расчета. Что касается метода независимых экстремальных значений функций, используемого в других программных комплексах, то они в значительной степени завышают истинные значения.

По сравнению с этим, расчет псевдо-суперпозиций \(R_x + 0.30 \cdot R_y \), которые рассчитываются в модуле MAXIMA с учетом альтернативных групп нагружений является более сложным и трудоемким.

2.6 Динамический анализ системы при ускорении основания или при землетрясениях

2.6.1 Расчетные усилия при землетрясении

Сейсмические воздействие на систему не являются частью внешнего динамического воздействия (т.е. не является частью уравнения 2.6). Явление землетрясения воздействует на систему в виде индуцированного движения (зрительная иллюзия движения неподвижного объекта-основания) основания расчетной системы (часть системы находится в контакте с грунтом).
Рис. 2.10 – Реакция SDOF системы при перемещении основания на $u_g(t)$ (при землетрясении)

Общее или абсолютное перемещение $u_t(t)$ объекта m складывается из перемещения основания сооружения $u_g(t)$ при землетрясении и перемещения $u(t)$ объекта m, движущего по инерции ввиду колебаний основания (рис. 2.10).

$$u_t(t) = u_g(t) + u(t). \quad (2.46)$$

Силы упругости и демпфирования зависят только от функции перемещения $u(t)$. Это значит, что функция $u_g(t)$, характеризующая перемещение основания, никак не влияет на усилия, возникающие внутри самой системы. С учетом данного факта, уравнения 2.46 и условия отсутствия внешнего воздействия на систему, уравнение движения SDOF системы при землетрясении может быть получено при помощи концепции динамического равновесия (рис. 2.10), где значение силы инерции, возникающей в результате колебательных движений основания, связано со значением общего ускорения $\ddot{u}_t(t)$, приложенного к рассматриваемому элементу системы (массе).

$$m \cdot \ddot{u}_t(t) + c \cdot \dot{u}(t) + k \cdot u(t) = m \cdot [\ddot{u}_g(t) + \ddot{u}(t)] + c \cdot \dot{u}(t) + k \cdot u(t) = 0; \quad (2.47)$$

После приложения к основанию системы ускорения $\ddot{u}_g(t)$ или после землетрясения, необходимо преобразовать уравнение 2.47 так, чтобы все неизвестные величины были расположены с левой стороны уравнения (уравнение 2.48).
\[m \cdot \ddot{u}(t) + c \cdot \dot{u}(t) + k \cdot u(t) = -m \cdot \ddot{u}_g(t) \equiv p_{eff}(t). \quad (2.48) \]

В правой части уравнения 2.48 слагаемое \(-m \cdot \ddot{u}_g(t) \equiv p_{eff}(t)\) характеризует расчетное усилие при землетрясении.

Сравнивая уравнения 2.47 и 2.48 можно сделать вывод, что реакция (отклик) сооружения (относительное перемещение \(u(t)\)), вызванная после придания ускорения \(\ddot{u}_g(t)\) грунтовому основанию, эквивалентна реакции сооружения, к которому приложена внешняя нагрузка \(-m \cdot \ddot{u}_g(t)\), с неподвижным грунтовым основанием (рис. 2.11).

![Рис. 2.11 – Действующее усилие \(p_{eff}(t)\) при землетрясении](image)

2.6.2 Равномерное возбуждение основания

Если предположить, что при землетрясении грунтовое основание сооружения возбуждается равномерно (когда все точки сооружения, соединенные с грунтовым основанием, подвержены движениям с одинаковыми параметрами), то мы можем применить ранее полученное уравнение 2.48 для \(SDOF\) системы к \(MDOF\) системе, и оно будет иметь следующий вид:

\[p_{eff}(t) = -M \cdot \ddot{u}_g(t); \quad (2.49) \]

где, \(p_{eff}(t)\) – вектор действующий усилий при землетрясении; \(\ddot{u}_g(t)\) – вектор ускорения грунтового основания.
При выборе векторного базиса \((\mathbf{i}_X, \mathbf{i}_Y, \mathbf{i}_Z)\) мы можем представить вектор ускорения грунтового основания в виде линейной комбинации этих трех векторов следующим образом:

\[
\ddot{\mathbf{u}}_g(t) = \mathbf{i}_X \cdot \ddot{u}_gX(t) + \mathbf{i}_Y \cdot \ddot{u}_gY(t) + \mathbf{i}_Z \cdot \ddot{u}_gZ(t); \tag{2.49}
\]

gде, \(\ddot{u}_gX(t), \ddot{u}_gY(t), \ddot{u}_gZ(t)\) – три составляющих ускорения грунтового основания, разложенного в Декартовой системе координат \((X, Y, Z)\).

Векторы \(\mathbf{i}_X, \mathbf{i}_Y, \mathbf{i}_Z\) называются векторами влияния, и они представляют собой смещение масс в результате приложения статического единичного перемещения к конструктивным точкам, находящихся в контакте с грунтовым основанием (точки опирания конструкции на грунтовое основание), в направлениях осей \(X, Y\) или \(Z\) (рис. 2.12).

Рис. 2.12 – (Рисунок сверху) Рама с двумя степенями свободы в каждом узле подвержена воздействию однотипных ускорений, приложенных к грунтовому основанию в направлении \(X\) и \(Y\). (Рисунок снизу) Векторы влияния \(\mathbf{i}_X\) и \(\mathbf{i}_Y\) представлены в качестве статических перемещений характерные при \(u_{gX} = 1\) и \(u_{gY} = 1\), соответственно.
Нагрузка, которая устанавливается пользователем при помощи команды ACCE NO 0 в модуле SOFiLOAD, будет восприниматься программой как расчетное усилие при землетрясении или возбуждающая нагрузка. Например, введенная в системе команда ACCE TYPE NODA NO 0 AX 1.0 AY 0 AZ 0 будет восприниматься программой как расчетное усилие при землетрясении \[p_{\text{eff}x}(t) = -M \cdot i_x \cdot \ddot{u}_{gx}(t), \] где значение ускорения \(\ddot{u}_{gx}(t) \) устанавливается при помощи команды FUNC. Для более подробного ознакомления с данной темой, вы можете изучить руководство к модулю SOFILOAD, команда ACCE.

2.6.3 Многократное возбуждение основания

В некоторых случаях, например, для конструкций больших размеров (мосты, трубопроводы, туннели, дамбы и т.д.), в основании которых располагается неоднородный грунт, предположение о равномерном сейсмическом возбуждении всех конструктивных точек, находящихся в контакте с грунтовым основанием, в некоторых случаях не применимо. Это связано с тем, что при расчете конструкции, опирающейся на неоднородное грунтовое основание, на сейсмическую устойчивость необходимо учитывать изменения сейсмической волны в пространстве и во времени, что на примере равномерного возбуждения основания не происходит.

В данном случае необходимо принять во внимание подобные явления, связанные с неоднородностью основания, и возбуждать конструкцию в нескольких местах их опирания на грунт различными функциями ускорения \(\ddot{u}_{gl}(t) \), где \(l = 1, \ldots, n_g \) – номер опорного элемента конструкции (опирание на грунт).

Если предположить, что расчетные линейные системы имеют некоторые упрощения (не учитывается влияние демпфирования колебаний и предполагается, что матрица масс в большинстве своем будет диагональной), то действующий вектор силы при многократно возбужденном основании может быть аналогичен вектору силы равномерно возбужденного основания (уравнения 2.49 и 2.50).
\[\mathbf{p}_{\text{eff}}(t) = \sum_{l=1}^{n_g} \mathbf{p}_{\text{eff},l}(t) = -\sum_{l=1}^{n_g} \mathbf{M} \cdot \mathbf{i}_l \cdot \ddot{u}_{g,l}(t). \] (2.51)

Единственным отличием от уравнений 2.49 и 2.50 является то, что теперь абсолютно для каждого опорного элемента конструкции мы имеем один вектор влияния \(i_l \), тогда как в случае равномерно возбужденного основания мы имели один вектор (в зависимости от направления землетрясения) на все опорные элементы.

Вектор влияния \(i_l \) может быть получен при помощи статической процедуры путем применения единичного перемещения опор \(u_{g,l} \equiv 1 \), а полученные в результате значения конструктивных перемещений и составляют вектор влияния \(i_l \). Пример определения векторов влияния показан на рис. 2.13.

Например, в конструкцию, опираемую в точках 1, 3 и 5, можно ввести три случая загружения с нагрузкой в виде перемещения опор в этих точках и, как только эти случаи загружения пройдут статический расчет, векторы перемещения конструкции будут соответствовать векторам влияния в этих точках опирания конструкции. Для получения более подробной информации о выводе уравнений действующих сил в случае многократного возбуждения грунтового основания, вы можете изучить монографию \([6\), п.п. 9.7] или [1].

Для более общего способа моделирования многократного возбуждения грунтового основания используются \textit{Метод Больших Масс} или \textit{Метод Больших Жесткостей}, которые описаны в разделе 2.6.4 данного руководства. Данные способы применимы и при нелинейном анализе.
Рис. 2.13 – (Верхний рисунок) Рама с двумя степенями своды в каждом узле, подверженная воздействию многократно возбужденного основания. (Рисунок снизу) Векторы влияния i_1 и i_2 представлены в качестве статических перемещений конструкции при перемещении опор $u_{g,1} = 1$ и $u_{g,2} = 1$, соответственно.

2.6.4 Метод больших масс и метод больших жесткостей

Часто бывает так, что пользователю, чтобы получить оригинальную акселерограмму землетрясения для различного рода исследовательских работ, необходимо, чтобы введенная динамическая нагрузка (в виде движения, ускорения или перемещения) стала неотъемлемой (обязательной) частью расчетной модели. Для достижения поставленной задачи используются Метод Больших Масс (LMM) и Метод Больших Жесткостей (LSM). В этих методах элемент большой массы или жесткости помещается в плоскость, расположенную между соответствующими узлами системы, значения ускорений и перемещений в которых, должны быть введены пользователем заранее. Далее эти характерные узлы приводят в возбуждение при помощи воздействия большого усилия,
возникающее в результате придания заданного ускорения элементу большой массы или, в результате заданного перемещения элемента большой жесткости.

Чтобы понять, как работает данный численный метод, давайте представим, что требуется возбудить конструкцию, зная только заданное пользователем значение ускорение $\ddot{u}_{g, l}$, действующее в направлении l (степень свободы). Для этого необходимо поместить элемент большой массы M_{large} в направлении l и, в тот же самый момент и том же направлении l приложить большое усилие, равное $M_{\text{large}} \cdot \ddot{u}_{g, l}$.

$$
\begin{bmatrix}
m_{11} & \ldots & m_{1l} & \ldots & m_{1n} \\
\vdots & & \vdots & & \vdots \\
m_{l1} & \ldots & M_{\text{large}} & \ldots & m_{ln} \\
\vdots & & \vdots & & \vdots \\
m_{n1} & \ldots & m_{nl} & \ldots & m_{nn}
\end{bmatrix}
\begin{bmatrix}
\ddot{u}_1 \\
\vdots \\
\ddot{u}_l \\
\vdots \\
\ddot{u}_n
\end{bmatrix}
+ \ldots =
\begin{bmatrix}
p_1 \\
\vdots \\
M_{\text{large}} \cdot \ddot{u}_{g, l} \\
\vdots \\
p_n
\end{bmatrix}. \quad (2.52)
$$

Необходимо выбирать уравнение только для l-ой степени свободы и преобразовать его так, чтобы получившееся выражение, включающее M_{large}, составляло его левую часть (LHS).

$$M_{\text{large}} \cdot \ddot{u}_l + \text{(остальные составляющие } LHS) = M_{\text{large}} \cdot \ddot{u}_{g, l}. \quad (2.53)$$

Если все уравнение 2.53 разделить на M_{large}, то получится следующее:

$$\ddot{u}_l + \frac{\text{(остальные составляющие } LHS)}{M_{\text{large}}} = \ddot{u}_g. \quad (2.54)$$

Если предположить, что M_{large} настолько большое, что отношение $\frac{\text{(остальные составляющие } LHS)}{M_{\text{large}}} \ll 1$, то в итоге мы получим:

$$\ddot{u}_l \approx \ddot{u}_g. \quad (2.55)$$

В итоге, вводя большую массу M_{large} с определенной степенью свободы (DOF) и, прикладывая к нему большое усилие, равное произведению $M_{\text{large}} \cdot \ddot{u}_g$, нам, как пользователям, становится доступно фактическое (практическое) значение ускорения \ddot{u}_g, приложенное к большой массе в направлении DOF.

Метод больших масс активируется только после того, как пользователь введет значения параметров $ACCE\, TYPE\, NODA\, NO$ в модуле $SOFiLOAD$, не забыв
при этом, что номер узла NO должен быть отличным от нуля. Затем, модуль DYNA в автоматическом режиме будет размещать большую массу в определенном узле, и прикладывать к нему большую силу, равную произведению $M_{large} \cdot \ddot{u}_g$.

Метод больших жесткостей работает таким же образом, только вместо большой массы, используется большая жесткость. Чтобы применить данный метод для расчета конструкции, пользователь должен в модуле SOFiLOAD использовать команду NODE TYPE WXX/WYY ... совместно с определенной функцией перемещения.

Методы LMM и LSM очень полезны при моделировании многократно возбужденного основания конструкции, особенно при расчете нелинейных систем. Для решения подобных задач применение метода эквивалентных усилий только усложняет процесс. Следует иметь в виду, что методы LMM и LSM, в отличие от методов эффективных сил, позволяют получить абсолютные значения ускорений и перемещений (твердое тело + относительное движение).

2.6.5 Коррекция исходной (эмпирической) кривой акселерограммы

В случае, когда динамическая нагрузка задана в виде приложенного ускорения к грунтовому основанию (например, при помощи метода LMM), изменение значения ускорения во времени зачастую представляется в виде эмпирической кривой или акселерограммы – графическое отображение функции изменения ускорения. Такие акселерограммы строятся по данным, полученным из натурных или эмпирических измерений сейсмографом – прибором для записи колебаний земной поверхности. Данный прибор запускается после того, как рассматриваемыми колебаниями будет преодолена некая точка отсчета или некий предел, установленный в самом сейсмографе, после чего прибор запустится и начнет непосредственное измерение. В результате, построенная акселерограмма имеет погрешность, которая становится причиной появления линейной
погрешности в значении скорости и квадратичной погрешности в перемещениях [7, 5].

Для выравнивания значений кривой акселерограммы лучше всего использовать функцию параболы \(\Delta a_g(t) \), которая прикладывается к кривой исходной функции ускорения \(a_g(t) \). В результате образуется новая, откорректированная кривая функции ускорения \(\bar{a}_g(t) \), которой, после интегрирования, в начальный момент времени \(t_b \) (значение которого обычно выбирается равное максимальному времени анализа) будут соответствовать нулевые перемещения и скорость.

\[
\bar{a}_g(t) = a_g(t) + \Delta a_g(t) = a_g(t) + (b \cdot t + c \cdot t^2);
\]

где, \(b \) и \(c \) – неизвестные коэффициенты функции параболы.

Функции изменения скорости и перемещения по времени, соответствующие новой кривой ускорения \(\bar{a}_g(t) \), могут быть получены при помощи интегрирования уравнения 2.56.

\[
\bar{v}_g(t) = \int_0^t \bar{a}_g(\tau)d\tau = \int_0^t a_g(\tau)d\tau + \left(\frac{b \cdot t^2}{2} + \frac{c \cdot t^3}{3} \right);
\]

\[
\bar{u}_g(t) = \int_0^t \bar{v}_g(\tau)d\tau = \int_0^t v_g(\tau)d\tau + \left(\frac{b \cdot t^3}{6} + \frac{c \cdot t^4}{12} \right);
\]

Теперь коэффициенты \(b \) и \(c \) могут быть определены путем решения системы уравнений (2.57а,б) с двумя неизвестными, и при условии, что функции перемещения \(\bar{u}_g(t) \) и ускорения \(\bar{v}_g(t) \) в момент коррекции исходной кривой будут равны нулю – \(\bar{u}_g(t) = 0, \bar{v}_g(t) = 0 \).

\[
\frac{b}{2} \cdot t_b^2 + \frac{c}{3} t_b^3 = -\int_0^{t_b} a_g(t)dt;
\]

\[
\frac{b}{6} \cdot t_b^3 + \frac{c}{12} t_b^4 = -\int_0^{t_b} v_g(t)dt = -\int_0^{t_b} \left(\int_0^t a_g(\tau)d\tau \right)dt ;
\]

Интегралы в правой части уравнений 2.58 обычно решаются при помощи некоторых формул интегрирования (например, по формуле трапеции).
Процесс коррекции кривой, описывающей функцию изменения ускорения по времени, может быть запущен при помощи параметра TBLC (Time for Base Line Correction – Время для коррекции исходной кривой) команды FUNC в модуле SOFiLOAD – см. п.п. 4.4 руководства по модулю SOFiLOAD.

2.6.6 Динамическая нагрузка в виде ускорения грунтового основания

Исходя из уравнения расчетных усилий при землетрясении (2.49) и используя уравнение 2.22, можно получить уравнения обобщенных нагрузок для определенных форм колебаний (обобщенная модальная нагрузка), но только в том случае, когда нагрузка введена в расчетную систему в виде функции ускорения грунтового основания (2.59).

\[p_k(t) = -\phi_k^T \cdot M \cdot [l_X \cdot \ddot{u}_{gX}(t) + l_Y \cdot \ddot{u}_{gY}(t) + l_Z \cdot \ddot{u}_{gZ}(t)]. \] (2.59)

Уравнение 2.19 преобразуется в:

\[\ddot{q}_k(t) + 2\xi_k\omega_k \cdot \dot{q}_k(t) + \omega_k^2 \cdot q_k(t) = \Gamma_{EQX}^k \cdot \ddot{u}_{gX}(t) + \Gamma_{EQY}^k \cdot \ddot{u}_{gY}(t) + \Gamma_{EQZ}^k \cdot \ddot{u}_{gZ}(t); \] (2.60)

где, \(\Gamma_{EQX}^k, \Gamma_{EQY}^k, \Gamma_{EQZ}^k \) – коэффициенты преобразования MDOF в SDOF при моделировании землетрясения в соответствующих направлениях осей X, Y и Z.

Коэффициенты преобразования равны:

\[\Gamma_{EQX}^k = \frac{L_{EQX}^k}{m_k}; \quad \Gamma_{EQY}^k = \frac{L_{EQY}^k}{m_k}; \quad \Gamma_{EQZ}^k = \frac{L_{EQZ}^k}{m_k}; \] (2.61)

где,

\[L_{EQX}^k = -\phi_k^T \cdot M \cdot i_X; \quad L_{EQY}^k = -\phi_k^T \cdot M \cdot i_Y; \quad L_{EQZ}^k = -\phi_k^T \cdot M \cdot i_Z. \] (2.62)

Примечание

Так как в ПК SOFiSTiK параметр \(m_k = 1 \), то \(\Gamma_k = L_k = -\phi_k^T \cdot M \cdot i \).
Примечание
Параметры \(m_k, L_k \) и \(\Gamma_k \) зависят от упорядоченности собственных векторов.

Применяя принцип суперпозиции, мы можем представить полное решение модального уравнения 2.60 следующим образом:

\[
q_k(t) = q_{kEQX}(t) + q_{kEQY}(t) + q_{kEQZ}(t); \tag{2.63}
\]

где, \(q_{kEQX}(t) \) – это обобщенная модальная (соответствующая определенной форме колебаний) координата отклика системы, вызванного в процессе признания ускорения в направлении глобальной оси \(X \) грунтовому основанию при моделировании землетрясения, \(\ddot{u}_{gx}(t) \).

Из уравнения 2.63 следует, что пользователь может разбить уравнение 2.60 на три небольших уравнения, каждое из которых соответствует одному определенному направлению движения грунтового основания при землетрясении, и рассматривать/анализировать их отдельно друг от друга.

Если акцентировать свое внимание на движение грунтового основания в направлении оси \(X \) при моделировании землетрясения, то модальное уравнение движения будет иметь следующий вид:

\[
\ddot{q}_{kEQX}(t) + 2\zeta_k\omega_k \cdot \dot{q}_{kEQX}(t) + \omega_k^2 \cdot q_{kEQX}(t) = \Gamma_{kEQX} \cdot \ddot{u}_{gx}(t). \tag{2.64}
\]

Поделив все уравнение 2.64 на коэффициент преобразования \(\Gamma_{kEQX} \), получится альтернативная версия модального уравнения движения (2.65).

\[
\ddot{D}_{kEQX}(t) + 2\zeta_k\omega_k \cdot \dot{D}_{kEQX}(t) + \omega_k^2 \cdot D_{kEQX}(t) = \ddot{u}_{gx}(t); \tag{2.65}
\]

где, параметр \(q_{kEQX}(t) \) – обобщенная модальная координата отклика системы, прямо зависит от обобщенного модального перемещения \(D_{kEQX}(t) \):

\[
q_{kEQX}(t) = \Gamma_{kEQX} \cdot D_{kEQX}(t). \tag{2.66}
\]

Решая уравнение 2.65, используя один из методов, описанных в п.п. 2.2 данного руководства, мы можем определить значение параметра \(q_{kEQX}(t) \) из
уравнения 2.66. Значение перемещения $u^{EQX}(t)$, включающее перемещения системы, возникающие при k-ой форме колебаний, и вектор перемещения, возникающий в результате движения грунтового основания в направлении оси X при моделировании землетрясения, определяется по формуле 2.67.

$$u_k^{EQX}(t) = \phi_k \cdot q_k^{EQX}(t) = \phi_k \cdot \Gamma_k^{EQX} \cdot D_k^{EQX}(t).$$ (2.67)

«Значения параметра $q_{max,k}$ отображаются в виде таблицы 3.36.»

2.6.7 Суммарная реакция/отклик расчетной системы

Значение общего вектора перемещения, возникающего в результате движения грунтового основания (землетрясения) в направлении оси X, определяется в результате наложения или сложения перемещений, соответствующие различным формам колебаний (модальная суперпозиция).

$$u^{EQX}(t) = \sum_{k=1}^{n} u_k^{EQX}(t).$$ (2.68)

Учитывая этот факт можно сделать вывод, что значение общего вектора перемещения, возникающего в результате действия пространственного землетрясения, определяется суммой векторов перемещений, соответствующих движениям грунтового основания во всех трех направлениях X, Y и Z (пространственная суперпозиция).

$$u(t) = u^{EQX}(t) + u^{EQY}(t) + u^{EQZ}(t) = \sum_{k=1}^{n} [u_k^{EQX}(t) + u_k^{EQY}(t) + u_k^{EQZ}(t)].$$ (2.69)

Все остальные значения реакций/откликов расчетной системы определяются аналогично методу, описанному в уравнении 1.29 в п.п. 2.3.5 данного руководства.

$$R(t) = R^{EQX}(t) + R^{EQY}(t) + R^{EQZ}(t) = \sum_{k=1}^{n} [R_k^{EQX}(t) + R_k^{EQY}(t) + R_k^{EQZ}(t)] = \sum_{k=1}^{n} [R_k^{EQX} \cdot q_k^{EQX}(t) + R_k^{EQY} \cdot q_k^{EQY}(t) + R_k^{EQZ} \cdot q_k^{EQZ}(t)].$$ (2.70)
2.6.8 Эквивалентные модальные нагрузки

Значения эквивалентных модальных усилий при \(k \)-й форме колебаний, соответствующих движению грунтового основания в направлении оси \(X \), определяются таким же образом, который был представлен в п.п. 2.3.5 данного руководства:

\[
f_k^{EQX}(t) = K \cdot u_k^{EQX}(t) = K \cdot \phi_k \cdot q_k^{EQX}(t) = K \cdot \phi_k \cdot \Gamma_k^{EQX} \cdot D_k^{EQX}(t); \tag{2.71}
\]

или при помощи матрицы масс:

\[
f_k^{EQX}(t) = M \cdot \phi_k \cdot \omega_k^2 \cdot q_k^{EQX}(t) = \Gamma_k^{EQX} \cdot M \cdot \phi_k \cdot A_k^{EQX}(t); \tag{2.72}
\]

где, \(A_k^{EQX}(t) = \omega_k^2 \cdot D_k^{EQX}(t) \) — значение реакции/отклика обобщенной SDOF расчетной системы при \(k \)-й форме колебаний от действия псевдоускорения, приложенного к грунтовому основанию в направлении оси \(X \) для моделирования землетрясения \(\ddot{u}_{gx}(t) \).³

«Для сооружений, не обладающих свойством демпфирования, значение псевдоускорения равно общему или полному ускорению, т.е. \(A(t) = \ddot{D}(t) + \ddot{u}_g(t) \). На самом же деле, все виды сооружений в той или иной степени обладают свойством демпфирования, но его значение в большинстве случаев незначительно, поэтому, значение псевдоускорения может быть приравнено к значению полного или общего ускорения. Значения усилий сопротивления, возникающих внутри самой конструкции/расчетной системы, пропорциональны значениям псевдоускорений.»

2.6.9 Эффективная модальная масса

Уравнение 2.72 можно записать следующим образом:

\[
f_k^{EQX}(t) = M_{eff}^{EQX} \cdot A_k^{EQX}(t); \tag{2.74}
\]
где, $M_{eff,k}^{EQQ} = \Gamma_k^{EQQ} \cdot M \cdot \phi_k$ – вектор движения эффективной модальной массы при движении грунтового основания в направлении оси X.

Этот вектор включает в себя компоненты всех узловых перемещений или степени свободы в узлах (поступательные и вращательные). В инженерной сейсмологии очень полезно знать сумму трансляционных компонентов (X, Y и Z) вектора эффективной модальной массы:

<table>
<thead>
<tr>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Параметр $M_{eff,k}$ не зависит от того как упорядочен или унифицирован собственный вектор. Он неизменный/постоянный.</td>
</tr>
</tbody>
</table>

«Эффективная модальная масса – доля массы сооружения, участвующей в динамической реакции по определенной форме колебаний при заданном направлении сейсмического воздействия в виде смещения основания как абсолютно жесткого тела.

При равномерно возбужденном основании вектора b_X, b_Y и b_Z равны векторам влияния i_X, i_Y и i_Z (см. п.п. 2.6).»

$$M_{eff,k}^{EQQ} = \sum_{k=1}^{n} M_{eff,k,X}^{EQQ}; M_{eff,k,Y}^{EQQ} = \sum_{k=1}^{n} M_{eff,k,Y}^{EQQ}; M_{eff,k,Z}^{EQQ} = \sum_{k=1}^{n} M_{eff,k,Z}^{EQQ}.$$ (2.77)
После расчета всех форм колебаний системы значение общей эффективной массы должно быть равно общей массе сооружения.

В большинстве случаев требуется, чтобы учитывались все формы колебаний системы, которые в значительной степени влияют на суммарное значение реакции/отклика сооружения. Согласно требованиям, приведенным в некоторых нормативных документах по сейсмическому расчету, суммарное значение эффективных масс учитываемой формы колебаний должно быть не меньше определенного значения, т. е. не меньше 90% от общей массы сооружения.

Эффективные модальные массы и суммарные эффективные массы не зависят от нагрузки при землетрясении, а только от направления движения грунтового основания. Это означает, что рассматриваемые параметры доступны при решении задач по поиску собственных значений расчетной системы.

\[V_{b,k,X}^{EQX}(t) = b_X^T \cdot f_k^{EQX} \cdot (t) = \Gamma_k^{EQX} \cdot b_X^T \cdot M \cdot \phi_k \cdot A_k^{EQX} \cdot (t) = M_{eff,k,X}^{EQX} \cdot A_k^{EQX} \cdot (t); (2.78) \]

\[V_{b,k,Y}^{EQX}(t) = b_Y^T \cdot f_k^{EQX} \cdot (t) = \Gamma_k^{EQX} \cdot b_Y^T \cdot M \cdot \phi_k \cdot A_k^{EQX} \cdot (t) = M_{eff,k,Y}^{EQX} \cdot A_k^{EQX} \cdot (t); (2.78) \]

\[V_{b,k,Z}^{EQX}(t) = b_Z^T \cdot f_k^{EQX} \cdot (t) = \Gamma_k^{EQX} \cdot b_Z^T \cdot M \cdot \phi_k \cdot A_k^{EQX} \cdot (t) = M_{eff,k,Z}^{EQX} \cdot A_k^{EQX} \cdot (t); (2.78) \]
где, \(V_{b,k,\text{EQ}}^X(t) \) - сдвигающее усилие, приложенное к основанию в направлении оси \(X \), при \(k \)-ой форме колебания системы в процессе движения грунтового основания в направлении оси \(X \).

Если при помощи параметра \(h_{\text{eff},k} \) обозначить высоту (связанную с некоторой опорной точкой), при которой результирующее усилие, возникающее от действия эквивалентных модальных нагрузок (сдвиг основания) \(V_{b,k}(t) \), то можно рассчитать значения соответствующих опрокидывающих моментов. Эти моменты возникают в основании расчетной системы и действуют в направлениях осей \(X, Y \) и \(Z \). Также, как и до этого, полученные значения соответствуют рассматриваемой \(k \)-ой форме колебаний системы при движении грунтового основания (землетрясении) в направлении оси \(X \).

\[
M_{b,k,\text{EQ}}^X(t) = V_{b,k,\text{EQ}}^X(t) \cdot h_{\text{eff},k,\text{EQ}}^X; \quad (2.79\text{а})
\]
\[
M_{b,k,\text{EQ}}^Y(t) = V_{b,k,\text{EQ}}^Y(t) \cdot h_{\text{eff},k,\text{EQ}}^Y; \quad (2.79\text{б})
\]
\[
M_{b,k,\text{EQ}}^Z(t) = V_{b,k,\text{EQ}}^Z(t) \cdot h_{\text{eff},k,\text{EQ}}^Z; \quad (2.79\text{в})
\]

где, \(h_{\text{eff},k,\text{EQ}}^X \) - эффективная модальная высота.

Анализируя формулы 2.78 и 2.79, можно сделать вывод, что сдвигающее усилие при \(k \)-ой форме колебаний \(V_{b,k}(t) \) и опрокидывающий момент \(M_{b,k}(t) \) в расчетной системе \(MDOF \) такие же, как и в расчетной системе \(SDOF \) с массой, равной эффективной модальной массе \(M_{\text{eff},k} \), и высотой, равной эффективной модальной высоте \(h_{\text{eff},k} \) (рисунок 2.14). Это придает параметрам эффективная модальная масса и эффективная модальная высота механический смысл.
Рис. 2.14 – (слева) Действие сдвигающего усилия $V_{b,k}(t)$ и опрокидывающего момента $M_{b,k}(t)$ в основании расчетной системы; (справа) Расчетная система SDOF с эффективной модально массой $M_{eff,k}$ и эффективной модальной высотой $h_{eff,k}$.

Суммарное значение сдвигающих усилий, действующих в направлениях осей X, Y и Z, равно:

$$V_{b,k}^{EQX}(t) = \sum_{k=1}^{n} V_{b,k,X}^{EQX}(t); \quad V_{b,Y}^{EQX}(t) = \sum_{k=1}^{n} V_{b,k,Y}^{EQX}(t); \quad V_{b,Z}^{EQX}(t) = \sum_{k=1}^{n} V_{b,k,Z}^{EQX}(t). \quad (2.80)$$

Суммарное значение опрокидывающих моментов равно:

$$M_{b,k}^{EQX}(t) = \sum_{k=1}^{n} M_{b,k,X}^{EQX}(t); \quad M_{b,Y}^{EQX}(t) = \sum_{k=1}^{n} M_{b,k,Y}^{EQX}(t); \quad M_{b,Z}^{EQX}(t) = \sum_{k=1}^{n} M_{b,k,Z}^{EQX}(t). \quad (2.81)$$

Реакция/отклик системы при определенной форме колебаний

Максимальное значение перемещения $u_{max,k}^{EQX}$, составляющее значительную часть вектора перемещения, при k-ой форме колебаний расчетной системы из-за движения грунтового основания в направлении оси X равно:

$$u_{max,k}^{EQX} = \max|u_{k}^{EQX}(t)| = \phi_k \cdot q_{max,k}^{EQX} = \phi_k \cdot T_{max,k}^{EQX} \cdot S_{D}^{EQX}(T_k, \xi_k). \quad (2.82)$$

Максимальное значение реакции/отклика $R_{max,k}^{EQX}$ расчетной системы при k-ой форме колебаний может быть получено при помощи уравнений 2.29 и 2.70.
Значение эквивалентной модальной нагрузки, связанной с максимальным (пиковым) значением отклика системы при \(k \)-ой форме колебаний, определяется по формуле 2.84 (см. 2.72).

\[
R_{\text{max},k}^{\text{EQX}} = \max|R_k^{\text{EQX}}(t)| = R_{k_0}^{\text{EQX}} \cdot q_{\text{max},k}^{\text{EQX}} = R_{k_0}^{\text{EQX}} \cdot \Gamma_k^{\text{EQX}} \cdot S_D^{\text{EQX}}(T_k, \xi_k). \tag{2.83}
\]

Как было рассмотрено ранее (п.п. 2.3.5), ПК SOFiSTiK не работает непосредственно с этими усилиями, и, следовательно, они не сохраняются в базе данных. Однако если имеется или возникает реальная необходимость в их получении, то у пользователя есть такая возможность, которая более подробно описана в п.п. 2.11.3 данного руководства.

Тоже самое касается и сдвиговых усилий, возникающих в основании сооружения и действующие в направлениях осей \(X \), \(Y \) и \(Z \). Данные усилия возникают совместно с максимальной (пиковой) реакцией/откликом расчетной системы на движение грунтового основания (землетрясения) в направлении оси \(X \) (\(EQX \)) и их значения определяются по следующим формулам:

\[
v_{b,k,X}^{\text{EQX}} = \max|v_{b,k,X}^{\text{EQX}}(t)| = \Gamma_k^{\text{EQX}} \cdot b_x^T \cdot M \cdot \phi_k \cdot S_{pA}^{\text{EQX}}(T_k, \xi_k). \tag{2.85a}
\]

\[
v_{b,k,Y}^{\text{EQX}} = \max|v_{b,k,Y}^{\text{EQX}}(t)| = \Gamma_k^{\text{EQX}} \cdot b_y^T \cdot M \cdot \phi_k \cdot S_{pA}^{\text{EQX}}(T_k, \xi_k). \tag{2.85b}
\]

\[
v_{b,k,Z}^{\text{EQX}} = \max|v_{b,k,Z}^{\text{EQX}}(t)| = \Gamma_k^{\text{EQX}} \cdot b_z^T \cdot M \cdot \phi_k \cdot S_{pA}^{\text{EQX}}(T_k, \xi_k). \tag{2.85в}
\]

Уравнения 2.85 можно преобразовать, используя эффективную модальную массу (см. уравнение 2.78)\(^9\).

\[
v_{b,k,X}^{\text{EQX}} = M_{\text{eff},k,X}^{\text{EQX}} \cdot S_{pA}^{\text{EQX}}(T_k, \xi_k). \tag{2.86a}
\]

\[
v_{b,k,Y}^{\text{EQX}} = M_{\text{eff},k,Y}^{\text{EQX}} \cdot S_{pA}^{\text{EQX}}(T_k, \xi_k). \tag{2.86b}
\]

\[
v_{b,k,Z}^{\text{EQX}} = M_{\text{eff},k,Z}^{\text{EQX}} \cdot S_{pA}^{\text{EQX}}(T_k, \xi_k). \tag{2.86в}
\]

«\(^9\)Значения сдвигающих усилий, зависящих от направления и спектра реакций/откликов при землетрясениях, отображаются в виде таблицы 3.34 и 3.35.»
Значения опрокидывающих моментов, возникающих совместно с максимальной (пиковой) реакцией/откликом расчетной системы при движении грунтового основания (землетрясения), определяются по формулам 2.87 (см. уравнение 2.79)\(^{10}\).

\[
M_{b,k,X}^{EQX} = V_{b,k,X}^{EQX} \cdot h_{eff,k,X}^{EQX} ;
\]

\[
M_{b,k,Y}^{EQX} = V_{b,k,Y}^{EQX} \cdot h_{eff,k,Y}^{EQX} ;
\]

\[
M_{b,k,Z}^{EQX} = V_{b,k,Z}^{EQX} \cdot h_{eff,k,Z}^{EQX} ;
\]

(2.79в)

«\(^{10}\)Значения опрокидывающих моментов, зависящих от направления и спектра реакций/откликов при землетрясении, отображаются в виде таблицы 3.34 и 3.35.»

Примечание

В модуле DYNAP опрокидывающий момент, действующий в основании сооружения, всегда ориентирован относительно начала глобальной системы координат.

Бывают случаи, когда максимальные значения свдигающих усилий и опрокидывающих моментов, соответствующие определенной форме колебаний, действуют на сооружение на некоторой высоте \(z\) от грунтового основания (см. рисунок 2.15 (справа)). Модуль DYNAP рассчитывает подобные случаи при помощи команды **CTRL BLEV**.
Рис. 2.15 – (слева) Сдвигающее усилие и опрокидывающий момент, действующие в основании сооружения; (справа) сдвигающее усилие и опрокидывающий момент, действующие на сооружение на высоте z от грунтового основания

Суммарное значение реакции/отклика системы

В п.п. 2.6.6 (уравнения 2.68 - 2.70) данного руководства показано, что в процессе анализа форм колебаний (модального анализа) в различные периоды времени (MTHA) любое суммарное значение реакции/отклика системы R(t), представленное в виде зависимости (функции) от времени t, может быть получено посредством сложения ее модальных составляющих R_k(t). При спектральном анализе реакций/откликов системы (RSA) все несколько сложнее. Результатами анализа RSA являются максимальные (пиковые) величины реакций/отклика R_{max,k} системы при различных ее колебаниях. Эти значения максимально точны, можно сказать, что они равны значениям, полученным при MTHA анализе. Однако в большинстве случаев значения реакций/откликов при различных колебаниях не достигают своих максимальных (пиковых) пределов в один общий временной момент. Проанализировав этот факт, можно сделать вывод, что суммарное
значение реакций/откликов системы R_{max} в рассматриваемый момент времени уже не будет равно сумме максимальных значений модальных составляющих $R_{\text{max},k}$. Фактически сумма всех модальных реакций/откликов позволяет определить верхний предел (границу) значения суммарной реакции/отклика системы.

$$R_{\text{max}}^{EQX} = \max|R_{EQX}(t)| \leq \sum_{k=1}^{n} \max|R_{\text{max}}^{EQX}(t)| = \sum_{k=1}^{n} R_{\text{max},k}^{EQX}. \quad (2.88)$$

Очевидно, что сумма абсолютных значений может рассматриваться как характерное значение при расчете системы/сооружения, однако в большинстве случаев это приводит к слишком большим погрешностям. На практике применяются совсем другие методы модального комбинирования (modal combination rule), обеспечивающие высокую точность результатов (SRSS, CQC и т. д.). Данный абзац может быть представлен в виде математического выражения.

$$R_{\text{max}}^{EQX} = MCOMB_{k=1}^{n}[R_{\text{max},k}^{EQX}]; \quad (2.89)$$

где, $MCOMB$ – применяется метод модального комбинирования (modal combination rule).

Пользователю необходимо взять за правило, какой бы метод комбинирования результатов он не выбрал, необходимо понимать, что суммарное значение реакции/отклика системы является всего лишь приближенным к своему истинному значению.

Аналогичным образом производится расчет суммарного значения реакции/отклика системы на воздействие движения грунтового основания или землетрясения. При помощи уравнения 2.89 осуществляется расчет составляющих суммарной реакции/отклика системы (R_{max}^{EQX}; R_{max}^{EQY}; R_{max}^{EQZ}) на действие землетрясения. Далее, полученные значения реакций/откликов должны быть наложены друг на друга по методу пространственного комбинирования (spatial combination rule), чтобы в результате было получено суммарное значение реакции/отклика R_{max} системы на одновременное действие трех составляющих землетрясения.
\[R_{\text{max}} = \text{SCOMB}[R^{\text{EQ}X}_{\text{max}}, R^{\text{EQ}Y}_{\text{max}}, R^{\text{EQ}Z}_{\text{max}}]; \] (2.90)

gде, \text{SCOMB} – применяется метод модального комбинирования (SRSS, 100-30-30, т. д.).

Более подробно методы модального и пространственного комбинирования значений реакций/откликов системы описаны в п.п. 2.5.3 данного руководства.

2.7 Кинематические связи

В МКЭ деформированное состояние тела определяется значением конечного числа степеней свободы. Ограничение числа степеней свободы равносильно введению дополнительных внутренних связей, что приводит к завышению жесткости тела по сравнению с его истинным значением. В этом случае перемещения, возникающие в расчетной системе от нагружения, будут в среднем меньше их точных значений.

Для обеспечения высокой точности результатов, полученных в процессе динамического анализа системы, зачастую используют сгущение конечно-элементной сетки. Однако это требует определенного опыта и знаний, т. к. выбор опорных узлов является очень ответственным этапом при создании расчетной системы. То же самое можно сказать и при вводе в систему кинематических связей или ограничений.

Несмотря на то, что момент \(M \), возникший от действия силы \(P \) на расстоянии \(a \), равен произведению \(P \) и \(a \) (\(M = P \cdot a \)), момент инерции эксцентрично расположенного объекта определенной массы равен \(m^2 \cdot a \). Модуль DYNA учитывает этот эффект автоматически при стандартных кинематических ограничениях. Однако, несмотря на это, в матрицах масс образуются недиагональные компоненты, что в конечном итоге приводит к необходимости применения механизма согласования матриц масс, не приведенных к диагональному виду. Для запуска данного механизма требуется не только
большое количество оперативной памяти ЭВМ, но еще это может привести к
колебаниям системы при поиске решения ввиду того, что был нарушен принцип
dискретного максимума на малых временных интервалах, что вызывает некую
настороженность и сомнения в правильности полученных результатов. Поскольку
такие матрицы не всегда подходят для поиска решения, пользователь может
перейти к использованию матриц масс, приведенных к диагональному виду, что
требует особого внимания при вводе в расчетную систему ограничений. При
моделировании жёсткой поверхности грунта в виде пластины следует поместить
опорный узел как можно ближе к центру тяжести или центру сдвига, чтобы
получить наиболее правдоподобные результаты.

Кинематические связи значительно увеличивают ширину полосы
пропускания (эффективно передаваемая полоса частот — ЭПЧ). В результате
емкость или объем памяти могут быть быстро превышены в случае больших
расчетных систем или сильно рекурсивных кинематических связей (Рекурсия —
определение, описание, изображение какого-либо объекта или процесса внутри
самого этого объекта или процесса, то есть ситуация, когда объект является
частью самого себя).

2.8 Упругость

При работе в модуле DYNА для создания расчетной системы используются
очень компактные элементы определенной жесткости. Например, пружинные и
граничные элементы классического вида, которые абсолютно не отличаются от
tех, которые используются в модулях ASE или STAR2.

Балочные элементы рассматриваются системой, как конечные элементы с
соответствующими перемещениями (аккреционный процесс) при помощи
Эрмитовой функции второго порядка (соответствует кубическим уравнениям).
Это эффект учитывается при:

– переменной жесткости и положении центра тяжести;
− переменном положении центра сдвига;
− гиперкоррекции деформаций сдвига;
− действии кручения;
− упругом основании для свайных элементов системы;
− действии всех нагрузок, значения которых находятся в базе данных, на балочный элемент.

Несмотря на это, все внутренние усилия и моменты, возникающие в сечении элемента, можно рассчитать при помощи команды \textit{CTRL BEAM 1}. Значения продольных деформаций в балочных элементах никогда не рассчитываются.

Плоские \textit{QUAD} оболочечные элементы включаются в систему в виде основных или базовых элементов (см. работы Hughes и/или Bathe-Dvorkin) или при помощи метода предполагаемых напряжений. По умочению базовые \textit{QUAD} элементы включают в себя шестую степень свободы (вращение перпендикулярно плоскости элемента) с учетом вариационного принципа вращающегося поля.

Объемные \textit{BRIC} элементы включаются в систему в виде базовых элементов или при помощи метода предполагаемых напряжений.

Для динамического анализа и расчета несжимаемых элементов (жидкости), находящихся в совместной работе с плоскими \textit{QUAD} и объемными \textit{BRIC} элементами, имеются специальные положения.

Задание анизотропного материала или его толщины в модуле \textit{DYNA} недоступны.

2.9 Геометрическая характеристика жесткости и \textit{P-delta} анализ конструкции

Первичное загружение (\textit{PLC}), приложенное ко всем элементам расчетной системы, может быть использовано для определения их геометрической жесткости. Значения эффектов теории второго порядка максимально точны только в тех случаях, когда значение осевого усилия не изменяется из-за влияния
геометрически нелинейных эффектов системы [1]. Для кабельных элементов (нити), помимо всего остального, также учитываются значения больших деформаций, образованных от действия рассматриваемого первичного загружения. В задаче «изгиб при кручении» учитывается влияние изгибающего и скручивающего моментов, которые прикладываются к расчетной системе несколько раз – итерационно.

Рассмотренный до этого подход может быть использован для определения собственного значения, соответствующего потере устойчивости элемента при продольном изгибе, либо для проведения линейного динамического или статического анализов, основанные на значении тангенциальной жесткости. Таким образом, данный подход учитывает влияние не только одного, но и превосходит по количеству так называемых P-delta эффектов, влияющих на расчетную систему.

Значение собственной частоты растянутого элемента системы, к которому приложена изгибающая нагрузка, увеличивается в тот момент, когда значение сжимающего в нем усилия уменьшаются до тех пор, пока оно не будет равно нулю. Однако, для кабельных элементов (нити) полное разделение геометрической жесткости не всегда является хорошим решением, так как это может привести к образованию отрицательных собственных значений при анализе потери устойчивости элементов системы. С другой стороны, коэффициент потери устойчивости определяется так же, как и коэффициент нагрузки. Поэтому, в большинстве случаев, при анализе кабельных элементов предусмотрено разделение предварительного напряжения в них на две части. Одна часть общего значения напряжения включена в общую жесткость (это значение определяется самим элементом), далее полученная разность между фактическим первичным и общим значениями используется для формирования геометрической жесткости, которое необходимо для проведения последующего анализа потери устойчивости. Если это общее значение не определено и функция CTRL PLC не может подобрать альтернативу, то первичное или основное
состояние расчетной системы будет рассматриваться в дальнейшем как общее предварительное напряжение.

2.10 Эффект нелинейности

В модуль DYNA заложены линейные алгоритмы для повышения производительности. Тем не менее, в работе данного модуля учтены некоторые очень важные эффекты нелинейности:

- при анализе системы «подвижной состав-сооружение» учтены особенности контакта подвижной нагрузки с сооружением;
- пружинные элементы могут включать в себя все нелинейные эффекты, в том числе соотношения между перемещениями и действующими усилиями. Дополнительной итерации для остаточных усилий не производится, поэтому изменение жесткости элемента не должно превышать допустимые пределы.

Рассматриваемые эффекты также доступны и при анализе форм колебаний (модальном анализе), но при условии, если используемые собственные значения обеспечивают достаточные относительные перемещения узлов с пружинными элементами.

- при анализе балочных элементов могут быть учтены все нелинейные эффекты, возникающие при взаимодействии сооружения со стационарным или переменным ветровым полем. Анализ включает галопирование (Галопирование – это автоколебания упругой системы в ветровом потоке (аэроупругие колебания), характерные для гибких сооружений с особыми формами поперечного сечения, например такими, как прямоугольные или D-образные) и флаттер (Флаттер – сочетание самовозбуждающихся незатухающих изгибающих и крутящихся автоколебаний элементов конструкции);
− при анализе кабельных (нити), плоских QUAD и элементов фермы также могут быть учтены относительные скорости ветрового потока;
− при явном численном интегрировании для создания объемных BRIC элементов системы доступны все модели материалов с нелинейными свойствами.

2.11 FAQ

2.11.1 Ручной контроль результатов спектрального анализа реакций/откликов системы (RSA)

В этом разделе рассмотрены и проиллюстрированы примеры ручной проверки критических и соответствующих усилий, рассчитанных с использованием правил суперпозиции различных форм колебаний в процессе спектрального анализа реакций/откликов системы (RSA).

Рассматриваемая в качестве примера конструкция представляет собой раму, подверженную сейсмическому воздействию в направлении глобальной оси X в виде спектра реакции/отклика (рис. 2.16). Задача состоит в том, чтобы вручную определить критическое значение момента $M_{x, max}$ и значение соответствующего продольного усилия N, и сравнить их с критическими значениями результатов, полученными при расчете в модуле DYNA (рис 2.17). Метод SRSS (Square Root of the Sum of Squares – Квадратный корень из суммы квадратов составляющих) применяется для комбинирования различных форм колебаний. Только первые две собственные формы колебаний относятся к общей реакции/отклику конструкции, подверженной сейсмическому воздействию.
рис. 2.16 – рама, подверженная сейсмическому воздействию в направлении глобальной оси X

рис. 2.17 – эпюры суммарного максимального (критического) значения изгибающего момента \(M_{y,\text{max}} \) и значение соответствующего продольного усилия \(N \), рассчитанные в модуле DYNAmic с использованием метода SRSS

согласно уравнению 2.83 максимальный момент при \(k \)-ой форме колебаний и продольное усилие рассчитываются следующим образом:

\[
M_{y,\text{max},k} = M_{y,0,k} \cdot q_{\text{max},k}; \quad (2.91a)
\]

\[
N_{\text{max},k} = N_{0,k} \cdot q_{\text{max},k}; \quad (2.91b)
\]

где, \(M_{y,0,k}, N_{0,k} \) – момент и продольное усилие, которые соответствуют смещениям собственных векторов при \(k \)-ой форме колебаний и, значения которых сохраняются в виде собственной формы колебаний от случая загруженция (рис. 2.17);
$q_{max,k}$ — максимальное значение координаты реакции/отклика системы соответствующей k-ой форме колебаний, значение которой берется из таблицы «Modal Responses» (таблица 3.36).

Для рассматриваемого примера параметр $q_{max,k}$ имеет следующее значение:

$$q_{max,1} = -1,386 \cdot 10^{-1};$$
$$q_{max,2} = +1,168 \cdot 10^{-3}.$$

Суммарное значение максимального момента, согласно уравнению 2.89, определяется при суммировании модальных моментов по методам комбинирования различных форм колебаний (в данном примере применим метод SRSS), например:

$$M_{y, max} = SRSS_{k=1}^{n}[M_{y, max,k}] = \sqrt{\sum_{k=1}^{n} M_{y, max,k}^2}.$$
(2.92)

(а) Собственная форма колебаний 1

(б) Собственная форма колебаний 2

Рис. 2.18 — Эпюры изгибающих моментов и продольных усилий, соответствующие смещениям собственных векторов
Продольное усилие N, соответствующее суммарному максимальному значению момента $M_{y, \text{max}}$, может быть рассчитано в соответствии с методами, описанными в п.п. 2.5.3, т. е. в соответствии с уравнением 2.45.

$$N = \sum_{k=1}^{n} f_k \cdot N_{\text{max},k};$$ \hspace{1cm} (2.93)

где, $f_k = \frac{M_{y,\text{max},k}}{M_{y,\text{max}}}.$

В конечном итоге после соответствующих расчетов будут получены результаты на концах балок 11 и 12 (рис. 2.16):

- Балка 11
 - Поперечное сечение в начале балки (узел 1)

 Максимальные значения модальных моментов и продольных усилий для форм колебаний 1 и 2 (уравнения 2.91 и рис. 2.18):

 $M_{y,\text{max},1} = (+9893) \cdot (-1,386 \cdot 10^{-1}) = -1371,0;$

 $M_{y,\text{max},2} = (-46368) \cdot (+1,168 \cdot 10^{-3}) = -54,2;$

 $N_{\text{max},1} = (+2031) \cdot (-1,386 \cdot 10^{-1}) = -281,5;$

 $N_{\text{max},2} = (+11995) \cdot (+1,168 \cdot 10^{-3}) = +14,0.$

 Суммарный максимальный момент (уравнение 2.92):

 $$M_{y,\text{max}} = \sqrt{1371,0^2 + 54,2^2} = +1372,0.$$

 Соответствующее продольное усилие (уравнения 2.93 и 2.94):

 $$N = \frac{-1371,0}{1372,0} \cdot (-281,5) + \frac{-54,2}{1372,0} \cdot (+14,0) = +280,7.$$

- Поперечное сечение в конце балки (узел 2)

 Максимальные значения модальных моментов и продольных усилий для форм колебаний 1 и 2:
Суммарный максимальный момент:

\[M_{y, max} = \sqrt{71,0^2 + 54,0^2} = +89,2. \]

Соответствующее продольное усилие:

\[N = \frac{-71,0}{89,2} \cdot (-280,4) + \frac{54,0}{89,2} \cdot (+12,6) = +230,5. \]

- Балка 12

 - Поперечное сечение в начале балки (узел 2)

Максимальные значения модальных моментов и продольных усилий для форм колебаний 1 и 2:

\[M_{y, max,1} = (+512) \cdot (-1,386 \cdot 10^{-1}) = -71,0; \]

\[M_{y, max,2} = (+46248) \cdot (+1,168 \cdot 10^{-3}) = +54,0; \]

\[N_{max,1} = (+2031) \cdot (-1,386 \cdot 10^{-1}) = -281,5; \]

\[N_{max,2} = (+11995) \cdot (+1,168 \cdot 10^{-3}) = +14,0. \]
— Поперечное сечение в конце балки (узел 3)

Максимальные значения модальных моментов и продольных усилий для форм колебаний 1 и 2:

\[M_{y,\text{max},1} = (-6019) \cdot (-1,386 \cdot 10^{-1}) = +834,2; \]
\[M_{y,\text{max},2} = (-25374) \cdot (+1,168 \cdot 10^{-3}) = -29,6; \]
\[N_{\text{max},1} = (+2023) \cdot (-1,386 \cdot 10^{-1}) = -280,4; \]
\[N_{\text{max},2} = (+10775) \cdot (+1,168 \cdot 10^{-3}) = +12,6. \]

Суммарный максимальный момент:

\[M_{y,\text{max}} = \sqrt{834,2^2 + 29,6^2} = +834,7. \]

Соответствующее продольное усилие:

\[N = \frac{+834,2}{+834,7} \cdot (-280,4) + \frac{-29,6}{+834,7} \cdot (+12,6) = -280,9. \]

Результаты, полученные при ручном расчете, согласуются с результатами, полученными при расчете в модуле DYNAX (рисунок 2.17).

2.11.2 Коэффициент преобразования MDOF системы в эквивалентную SDOF систему (модальный коэффициент участия)

Коэффициент преобразования системы при землетрясении в направлении оси X определяется по формуле (см. уравнение 2.61):

\[f_{\text{EQX}}^{\text{EQX}} \cdot T \cdot M \cdot l_x. \]

В состав отчета о результатах анализа системы в модуле DYNAX не включены значения коэффициентов преобразования, однако, если эти значения понадобятся пользователю, то они могут быть взяты из базы данных программы. Если анализ собственных значений был выполнен при помощи модуля DYNAX, то
коэффициенты преобразования $\Gamma_{k}^{EQX}, \Gamma_{k}^{EQY}, \Gamma_{k}^{EQZ}$ сохраняются в базе данных в составе команды LC_CTRL (012/LC) для соответствующего случая загружения LC с собственными значениями на позиции RX, RY и RZ соответственно. Ввод рассмотренного примера в программу на языке CADINP выглядит следующим образом:

@KEY LC_CTRL #lc_eig+#k $ #lc_eig+#k = k-ая форма колебаний $$

Случай загружения LC $

STO#PFx @(RX) $ коэф-т преобразования при землетрясении. В направлении X $$
направление $

STO#PFy @(RY) $ коэф-т преобразования при землетрясении. В направлении Y $$
направление $

STO#PFz @(RZ) $ коэф-т преобразования при землетрясении. В направлении Z $$
направление $

Значения коэффициентов преобразования берутся из CDB командой LC_CTRL при k-ой собственной форме колебаний (сохраняются в составе загружения #lc_eig+#k).

2.11.3 Эквивалентные модальные нагрузки

Зачастую бывает так, что пользователю необходимы значения эквивалентных модальных нагрузок, полученные в результате спектрального анализа реакции/отклика системы (см. уравнение 2.84).

$$
\frac{f_{max,k}^{EQX}}{M \cdot \phi_k \cdot S_{pA}^{EQX} (T_k, \xi_k)} \Gamma_{k}^{EQX} \cdot M \cdot \phi_k \cdot S_{pA}^{EQX} (T_k, \xi_k).
\tag{2.96}
$$

Как говорилось ранее (см. п. п. 2.3.5, 2.6.6 и 2.5.1), модуль DYNA не работает напрямую с этими силами, чтобы рассчитать модальные реакции/отклики системы. Модуль DYNA использует прямой метод анализа системы. Следовательно, эти силы не сохраняются в базе данных. Однако
пользователь может вывести их собственоручно. Как это сделать, объясняется далее в руководстве.

В процессе анализа собственных значений в модуле DYNA сохраняется вектор нагрузки, соответствующий \(k \)-ому собственному значению случая загружения.

\[
\omega_k^2 \cdot M \cdot \phi_k. \tag{2.97}
\]

Сравнивая уравнения 2.96 и 2.97 очевидно, что эквивалентные модальные нагрузки могут быть получены при умножении коэффициента преобразования на нагрузки из случая загружения с собственным значением.

\[
\Gamma_k^{EQX} \cdot S_{pA}^{EQX} (T_k, \xi_k); \tag{2.98}
\]

В п. п. 2.11.2 мы рассмотрели, как достать значение коэффициента \(\Gamma_k^{EQX} \) из базы данных. Значения параметров \(\omega_K \) и \(S_{pA}^{EQX} (T_k, \xi_k) \) могут быть взяты из отчетного файла «Report Browser» или, как альтернатива, из базы данных программы.

Значение параметра \(\omega_K \) сохраняется в CDB командой LC_CTRL (012/LC) для соответствующего случая загружения с собственным значением на позиции RPAR и может быть, как пример, введен в систему при помощи языка CADINP следующим образом:

```plaintext
@KEY LC_CTRL #lc_eig+##k $ #lc_eig+##k = случай загружения $$ k-ое собственное значение $ 
ST0#w @\{ RPAR )
```

Значение произведения \(\Gamma_k^{EQX} \cdot S_{pA}^{EQX} (T_k, \xi_k) \) сохраняется в базе данных и при необходимости может быть запрошено из значения LSAF базы данных CDB командой BASE_SUM для соответствующего спектра реакций/откликов системы, возникающих от воздействия на нее случая загружения (#lc_rs_x), и собственной формы колебаний (#k):
Теперь же, когда значение коэффициента нагрузки известно, все, что остается сделать, это применить его к соответствующему загружению \(LC \) с собственным значением. Например:

```plaintext
+PROG ASE
.
.
LC ...

LCC #l_eig*#k FACT #SPax_PFx /#/w **2
.
.
END
```

2.11.4 Масштабирование обобщенных свойств \(SDOF \) системы для упорядочивания различных собственных векторов системы

Как уже говорилось ранее, в ПК \(SOFiSTiK \) собственные вектора \(\phi_k \) упорядочены таким образом, чтобы значение обобщенной модальной массы \(m_k \) было равно 1 для каждой собственной формы колебаний \(k \) системы. Но зачастую бывает так, что пользователю, чтобы упорядочить различные собственные вектора системы, требуется определить ее обобщенные модальные свойства. Для достижения поставленной цели необходимо выполнить следующие действия, которые описаны ниже.

Задача состоит в том, чтобы исходя из известных обобщенных модальных свойств \((m_k \equiv 1, c_k, k_k \text{ и } p_k(t)) \), собственных значений и исходных собственных векторов \((\omega_k \text{ и } \phi_k) \), определить значения новых обобщенных модальных свойств системы \((\bar{m}_k \equiv 1, \bar{c}_k, \bar{k}_k \text{ и } \bar{p}_k(t)) \), которые соответствуют новым собственным векторам \(\bar{\phi}_k \). Новые собственные вектора \(\bar{\phi}_k \) и старые собственные вектора \(\phi_k \)
должны быть линейно зависимыми, т.е. они должны быть пропорциональны друг другу (ур. 2.99).

\[\bar{\phi}_k = \alpha_k \cdot \phi_k; \]

где, \(\alpha_k \) – коэффициент пропорциональности (для \(k \)-ой формы колебаний).

Используя уравнение 2.99 для определения обобщенных модальных свойств системы, получаются следующие расчетные формулы:

\[\overline{m}_k = \overline{\phi}_k^T \cdot \mathbf{M} \cdot \overline{\phi}_k = \alpha_k^2 \cdot \phi_k^T \cdot \mathbf{M} \cdot \phi_k = \alpha_k^2 \cdot m_k = \alpha_k^2 \cdot 1,0 = \alpha_k^2; \]

(2.100а)

\[\overline{k}_k = \overline{\phi}_k^T \cdot \mathbf{K} \cdot \overline{\phi}_k = \alpha_k^2 \cdot \phi_k^T \cdot \mathbf{K} \cdot \phi_k = \alpha_k^2 \cdot k_k = \alpha_k^2 \cdot \omega_k^2 \cdot m_k = \alpha_k^2 \cdot \omega_k^2; \]

(2.100б)

\[\overline{c}_k = \overline{\phi}_k^T \cdot \mathbf{C} \cdot \overline{\phi}_k = \alpha_k^2 \cdot \phi_k^T \cdot \mathbf{C} \cdot \phi_k = \alpha_k^2 \cdot c_k = \alpha_k^2 \cdot \frac{2\xi_k \omega_k}{m_k} = \alpha_k^2 \cdot 2\xi_k \omega_k; \]

(2.100в)

\[\overline{p}_k = \overline{\phi}_k^T \cdot \mathbf{p} = \alpha_k \cdot \phi_k^T \cdot \mathbf{p} = \alpha_k \cdot p_k. \]

(2.100г)

Таким образом, при помощи известного значения коэффициента пропорциональности между новым и исходным собственными векторами \(\alpha_k \) значения новых обобщенных модальных свойств системы могут быть легко получены из старых при помощи уравнений (2.100).

Другие свойства системы, такие как, например, \(L_k \) или \(\Gamma_k \) (см. уравнения 2.62 и 2.61), которые зависят от упорядоченности собственных векторов, могут быть преобразованы аналогичным образом, т.е.:

\[\bar{L}_k = \overline{\phi}_k^T \cdot \mathbf{M} \cdot \mathbf{l} = \alpha_k \cdot \phi_k^T \cdot \mathbf{M} \cdot \mathbf{l} = \alpha_k \cdot L_k; \]

(2.101а)

\[\bar{\Gamma}_k = \frac{\phi_k^T \cdot \mathbf{M} \cdot \mathbf{l}}{\phi_k^T \cdot \mathbf{M} \cdot \phi_k} = \frac{\alpha_k \cdot \phi_k^T \cdot \mathbf{M} \cdot \mathbf{l}}{\alpha_k \cdot \phi_k^T \cdot \mathbf{M} \cdot \phi_k} = \frac{1}{\alpha_k} \cdot \Gamma_k. \]

(2.101б)

В особом (частном) случае, когда собственные вектора масштабируются таким образом, что максимальная векторная составляющая \(\max_{1 \leq j \leq n}(\bar{\phi}_{j,k}) \) равна 1,0, а коэффициент пропорциональности \(\alpha_k \) определяется по формуле 2.102.

\[\alpha_k = \frac{1,0}{\max_{1 \leq j \leq n}(\bar{\phi}_{j,k})}; \]

(2.102)

где, \(\max_{1 \leq j \leq n}(\bar{\phi}_{j,k}) \) - максимальная компонента исходного собственного вектора при \(k \)-ой форме колебаний.
Значение максимальной компоненты может быть легко найдено путем просмотра результатов, например, в WinGRAF, Result Viewer и т. д., в которых хранятся значения собственных векторов при максимальных перемещениях в системе от загружения \(LC \).
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

3 ОПИСАНИЕ КОМАНД

3.1 Используемый язык программирования

Ввод всех нижеприведенных команд выполняется на языке программирования CADINP (см. общее руководство по ПК SOFiSTiK: «Basics»). Геометрическая и статическая системы уже должны быть сохранены в базе данных программы.

Программа различает 3 категории единиц измерения:

\(mm \) Фиксированные единицы. Соответствуют рассматриваемой единице измерения.

[\(mm \)] Явная единица. Значения, которые вводятся по умолчанию в указанных единицах. Также возможно явное присвоение соответствующей единицы определенному значению (например, \(2.5 \ [м] \)).

[\(mm \)]\(_{\ 1011}\) Неявная единица. Неявные единицы относятся к категории семантических единиц и обозначаются соответствующим идентификационным номером (показан зеленым цветом). Допустимые категории, относящиеся к единице "длина", являются, например, геодезическая высота, длина и толщина сечения. Ед. измерения, устанавливаемые программой по умолчанию для каждой категории, определяются текущим активным (соответствует выбранным ранее нормам и правилам при проектировании) рядом единиц измерения. Этот ряд, как было сказано ранее, может быть изменен (команда PAGE). Указанная в квадратных скобках единица измерения, по умолчанию, соответствует ряду 5 (Eurocodes, NORM UNIT 5).
3.2 Ввод данных в расчетную систему

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметры</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYST</td>
<td>TYPE NCS PROB PHYS CS PLC STAT</td>
</tr>
<tr>
<td>CTRL</td>
<td>OPT VAL VAL2</td>
</tr>
<tr>
<td>GRP</td>
<td>NO VAL CS FACS CS HING RADA RADB</td>
</tr>
<tr>
<td></td>
<td>MODD FACP FACM WIND LMAX NCSP</td>
</tr>
<tr>
<td>MAT</td>
<td>NO E MUE G K GAM GAMA</td>
</tr>
<tr>
<td>BMAT</td>
<td>ALFA EY MXY OAL OAF SPM TITL</td>
</tr>
<tr>
<td>SMAT</td>
<td>DIL GAMB REF MREF H</td>
</tr>
<tr>
<td></td>
<td>NO LC EX EY EZ RHOX RHOY</td>
</tr>
<tr>
<td>MASS</td>
<td>RHOZ ALF BET</td>
</tr>
<tr>
<td></td>
<td>NO MX MY MZ MXX MYY MZZ</td>
</tr>
<tr>
<td></td>
<td>MXY MXZ MYZ MB</td>
</tr>
<tr>
<td>EIGE</td>
<td>NEIG TYPE NITE MITE LMIN STOR LC</td>
</tr>
<tr>
<td></td>
<td>LCUP</td>
</tr>
<tr>
<td>MODD</td>
<td>NO D A B PERS</td>
</tr>
<tr>
<td>STEP</td>
<td>N DT INT A B BET DEL</td>
</tr>
<tr>
<td></td>
<td>THE EIGB EIGT EIGS DTF STHE</td>
</tr>
<tr>
<td>LC</td>
<td>NO FACT DLX DLY DLZ MODB TITL</td>
</tr>
<tr>
<td>CONT</td>
<td>TYP REF NR V TMIN LCUV LCUT</td>
</tr>
<tr>
<td></td>
<td>LCUR</td>
</tr>
<tr>
<td>HIST</td>
<td>TYPE FROM TO STEP RESU LCST XREF</td>
</tr>
<tr>
<td></td>
<td>YREF ZREF DUMP</td>
</tr>
<tr>
<td>EXTR</td>
<td>TYPE MAX MIN STYP ACT</td>
</tr>
<tr>
<td>ECHO</td>
<td>OPT VAL</td>
</tr>
</tbody>
</table>

Команды *HEAD, END и PAGE* более подробно описаны в общем руководстве *SOFiStiK: «Basics»*. Последовательность команд, которые описаны в
данном руководстве, аналогична тому, как их нужно вводить в расчетную систему.

3.3 **SYST** – Параметры расчетной системы

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>Тип расчетной системы:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>REST используется существующая главная расчетная система</td>
<td>LIT</td>
<td>REST</td>
</tr>
<tr>
<td></td>
<td>SECT используется часть расчетной системы (подсистема) – SNO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNO</td>
<td>Номер сечения</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROB</td>
<td>Типы геометрического анализа:</td>
<td>LIT</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>LINE линейный анализ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TH2 анализ по теории 2-ого порядка</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TH3 анализ по теории 3-ого порядка</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS</td>
<td>Типы физического анализа:</td>
<td>LIT</td>
<td>LINE</td>
</tr>
<tr>
<td></td>
<td>LINE линейный анализ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NONL нелинейный анализ (все элементы)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NSPR нелинейный анализ (пружин)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NMAT нелинейный анализ (материала)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Этапы возведения сооружения</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLC</td>
<td>Первичное загружение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT</td>
<td>Этапы анализа расчетной системы:</td>
<td>LIT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SERV эксплуатационная надежность</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ULTI предельное рабочее состояние</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALC нелинейная система общего вида</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Анализируемая расчетная система должна храниться в базе данных программы. DYNA может анализировать также конечно-элементные сетки специфических сечений. Эти элементы могут быть отобраны для последующего анализа при помощи команды SYST SECT nnn, где параметр nnn – номер этого сечения. Подобные элементы конечно-элементной системы сохраняется в отдельном подкаталоге базы данных программы.

Геометрия расчетной системы может быть проанализирована по линейному закону, по теории 2-го (небольшие значения деформаций, возникающие при влиянии значительных напряжений) или 3-го порядков (большие значения деформаций, но небольшие напряжения). Значения напряжений при заданной жесткости элемента возникают от действия первичного загружения PLC системы. Без учета PLC анализ системы всегда будет производиться по линейному закону. Если же воздействие PLC на систему учтено, то по умолчанию система анализируется по теории 2-го порядка TH2. Анализ системы по теории 3-го порядка TH3 в настоящее время доступен только при явном ее интегрировании.

Физические особенности/свойства системы могут быть проанализированы по линейному закону, а нелинейному анализу могут быть подвержены свойства пружинных элементов и/или нелинейные свойства используемого материала, но только при явном их интегрировании. Определение состояния/положения системы позволяет определить зависимость напряжений от деформаций и коэффициенты запаса в соответствии с выбранными нормами проектирования – INI-файлом.

В процессе анализа используются те свойства системы, которые соответствуют рассматриваемому этапу возведения сооружения CS, а также те значения напряжений и деформаций, которые были получены в результате воздействия на систему первичного загружения PLC - команда CTRL PLC.
3.4 CTRL – Расчетные параметры системы

См. также: *ECHO, GRP, MASS, EIGE, MODD, STEP, LC, CONT, HIST, EXTR*

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT</td>
<td>Расчетный параметр системы</td>
<td>LIT</td>
<td>!</td>
</tr>
<tr>
<td>VAL</td>
<td>Значение параметра</td>
<td>-</td>
<td>!</td>
</tr>
<tr>
<td>V2</td>
<td>Вторичное значение параметра</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V3</td>
<td>Вторичное значение параметра</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V4</td>
<td>Вторичное значение параметра</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V5</td>
<td>Вторичное значение параметра</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V6</td>
<td>Вторичное значение параметра</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Командой *CTRL* устанавливаются значения следующих расчетных параметров:

PLC, Первичный случай загружения:

При вводе в анализируемую систему первичного нагружения *PLC* будет учтено значение ее первоначальной жесткости. В связи с этим в программу были введены условия прочности по теории 2-ого порядка или *P-delta* эффекты, однако процесс итерации не запуститься при изменении исходного значения напряжения (п.п. 2.9). При анализе собственной частоты сжатого участка расчетной системы собственные значения уменьшаются до нуля – граница потери устойчивости, в этот же момент в растянутом участке системы собственные значения увеличиваются. В связи с этим в процессе анализа системы необходимо учитывать ее нелинейную жесткость, заданную при помощи модуля *AQB*.

Таким образом, спецификация собственных значений при потере устойчивости системы является необходимым процессом!

Так как в основе динамического анализа лежат значения...
тангенциальной жесткости, нагрузки, приложенные к расчетной системе, всегда должны вводиться как дополнительные нагрузки!

V2 Применение первичного загружения *PLC*

0 = только для анализа геометрической жесткости.
1 = как дополнение к полученным результатам анализа (по умолчанию, только балочные элементы)
2 = для создания противоположного усилия (только балочные элементы)
3 = для совместного включения функций 1 и 2.

V3 Использование *PLC* для анализа жесткости балок (по умолчанию *n* = 7), где:

+1 = осевое усилие
+2 = изгибающий момент
+3 = кручение

V4 Функция для оценки геометрической жесткости кабельных элементов – нитей (по умолчанию 0)

1 = для анализа собственных значений, связанных с потерей устойчивости системы, значение общего предварительного напряжения для кабельных элементов от действия *PLC* на систему не устанавливается.

2 = запретить обновление значений координат

RLC Действие результирующего случая загружения *RLC* на систему:

При вводе загружения *RLC*, интегрированного с отдельными случаями загружения, начиная с *RLC* + 1, все результаты, полученные в ходе анализов расчетной системы на всех временных интервалах, будут сохраняться в базе данных программы. Полученные результаты могут быть использованы для создания анимационной последовательности этапов работы сооружения (расчетной системы). При помощи функции V2 пользователь может управлять следующими параметрами:

+1 = Перемещения (по умолчанию)
+2 = Результаты анализов элементов системы
+4 = Скорости и ускорения
+8 = Схемы загружения подвижным железнодорожным составом
value = номер пользовательского случая загружения (> 9999)

BEAM

Создание балочного элемента (Bitpattern), другое название: *BTYP*:

- +1 = все сечения (только статический анализ)
- +4 = классическая балка Тимошенко
- +8 = балка несоответствующая балке Тимошенко (по умолчанию)
- +12 = классическая балка с поправочными коэффициентами жесткости при сдвиге

CONT

Деактивация/активация экстраполяции перемещения в контактной точке расчетной системы:

- 0 = деактивация
- 1 = активация

WARP

Деформации при кручении и продольный изгиб при кручении:

- 0 = нет, используется теория кручения Сен-Венана второго порядка
- 1 = да, если сечение недеформированно. (*CM* ≈ 0). Система анализируется на действие продольного изгиба при кручении при первоначальной ее жесткости
- 2 = да, даже если *CM* ≈ 0,0. Поскольку характерная длина в этом случае будет равна нулю, крутильных напряжений от коробления (скручивания) основания не возникает. Этот параметр используется только в особых случаях

BETA

Обработка значения приведенной длины при продольном изгибе после потери устойчивости собственные значений:

- 0 = сохранение
- 1 = наложение (суперпозиция)

Результаты оценки длины продольного изгиба будут сохранены только для тех балочных элементов, в которых результирующее
значение меньше предельного значения параметра L_{MAX}, указанного в составе команды GRP. Также следует отметить, что возможны случаи, когда данный подход для анализа приведенных длин при продольных изгибах балок не подходит и, что в большинстве случаев более подходящим для этого является анализ второго порядка.

QUAD
Создание плоских QUAD элементов:
- $0 = $ согласованные элементы системы с коррекцией «$bbar»
- $1 = $ несогласованные элементы
- $2 = $ значения четырех предполагаемых перемещений + вращательная степень свободы
- $3 = $ значения пяти предполагаемых перемещений + вращательная степень свободы

BRIC
Создание BRIC элементов:
- $0 = $ согласованные элементы системы с коррекцией «$bbar»
- $1 = $ несогласованные элементы

SPRI
Создание пружинных SPRING элементов (Bitpattern)
- $+1 = $ наличие эксцентриситета в элементе (по умолчанию)
- $+2 = $ учет нелинейности
- $+32 = $ не экстраполировать перемещения элемента по времени
- $+64 = $ не экстраполировать демпфирующие усилия в элементе по времени

MCON
Создание матрицы масс
- $1 = $ диагональная матрица масс (по умолчанию)
- $2 = $ Согласование матрицы масс с расчетной системой
 Согласование матриц трансляционных элементов расчетной системы
 (По умолчанию, если имеются соответствующие кинематические связи)
- $3 = $ Согласованные матрицы элементов и расчетных систем, включающих вращательные массы (по умолчанию, если $CTRL\ WARP\ 1)$
Примечание

Вращательные массы при их кручении всегда направлены к центру (центр кручения). В связи с этим перед прикладыванием скручивающих усилий необходимо проанализировать кинематические ограничения/связи имеющиеся у рассматриваемого поперечного сечения элемента.

CCON
Создание матрицы демпфирования
(также как и с **MCON**, но применяется только в особых случаях)

HLC
Количество промежуточных результатов, необходимых для анализа переходных процессов ветрового воздействия (только для внутреннего использования)

SRES
Установившийся отклик (по окончанию переходного процесса)
- 0 = упрощенный анализ фаз переходного процесса по знаку
- 1 = так же, как и при 0, но учитываются переходные компоненты начальных условий, которые будут использоваться только в очень особых случаях
- 2 = точный учет фаз переходного процесса (по умолчанию)

STYP
Наложение (суперпозиция) спектральных и стационарных результирующих значений реакции/отклика системы
- **MAX** – значения функций рассчитываются отдельно друг от друга, а затем выбирается максимальное и минимальное их значение (0)
- **ADD** – все функции добавляются в алгебраической форме (1)
- **SUM** – все функции добавляются, как абсолютные значения (2)
- **SRSS** – рассчитывается квадратный корень из суммы квадратов значений функций (3)

Значения, установленные по умолчанию, зависят от типа анализа.

V2
Значение по умолчанию для **EXTR** (п.п. 3.16) и оценка результирующих значений при сдвиге основания:

Значения, установленные по умолчанию, зависят от типа анализа.
ADD – все функции добавляются в алгебраической форме (0)

SUM – все функции добавляются, как абсолютные значения (1)

SRSS – рассчитывается квадратный корень из суммы квадратов значений функций (2)

CQC – полно-квадратичная комбинация (3)

SRSi – гармонизированный (согласованный) SRSS

CQCi - гармонизированный (согласованный) CQC

BLEV Значение высоты слоя (ордината), при котором, в процессе анализа спектра реакций системы, должно быть рассчитано результирующее значение сдвига основания (может быть определен несколько раз). При расчете значения результирующего момента система всегда обращает внимание на свою привязку к глобальной системе координат, чтобы была возможность произвести наложение (принцип суперпозиции) соответствующих значений на различных этапах ее работы.

3.4.1 SOLV – Решатель уравнений

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>Выбор решателя уравнений</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Прямой решатель систем линейных уравнений с матрицами профильного хранения (методы Гаусса/Холецкого)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Итерационный решатель разреженных систем</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Прямой LDL решатель разреженных систем</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Команда</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>По умолчанию</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>4</td>
<td>Параллельный прямой решатель разреженных систем (PARADISO – PARAllel DIrect SOlver)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Для решения систем уравнений конечно-элементной системы в ПК *SOFiSTiK* имеется ряд решателей. Какой из решателей лучше всего подходит, зависит от типа системы, а для правильного выбора решателя необходимо обладать знанием соответствующих ее (системы) параметров. В ПК *SOFiSTiK* доступны следующие типы решателей:

- **Прямой решатель систем линейных уравнений с матрицами профильного хранения** (методы Гаусса/Холецкого) – *Direct Skyline Solver* (*Gauss/Cholesky*)

 Это классический решатель конечно-элементных расчетных систем. Данный решатель лучше всего работает с профильно-ориентированной матрицей. Объем необходимой памяти хранилища зависит от внутренней оптимизации узлов системы и может иметь довольно большое значение при работе с трехмерными-3D моделями сооружений.

- **Итерационный решатель (Метод сопряженных градиентов)**

 Одним из преимуществ итерационного решателя являются его заниженные требования к хранилищу результатов. Ко всему прочему данный решатель тратит значительно меньше времени на расчет уравнений по сравнению с двумя предыдущими типами решателей. Данное преимущество особенно заметно в случае решения большеобъемных моделей сооружений.

- **Прямой решатель разреженных систем**

 Данные типы решателей соответствуют современному уровню технологий в области расчета, моделирования и проектирования различных сооружений. В ПК *SOFiSTiK* используются довольно
актуальные версии прямого LDL решателя, разработанного Timothy A. Davis, и параллельного прямого решателя PARDISO.

Преимущество применения прямых решателей наглядно демонстрируется в случае, когда в системе уравнений имеются несколько отличных друг от друга правых частей. В этом случае мощности, затрачиваемые на их решение, очень малы по сравнению с процессом триангуляции системы уравнений. Таким образом, данные типы решателей являются первыми решателями, которые выбираются при абсолютно любом динамическом анализе системы или в случае большого количества загружений LC.

Чтобы минимизировать трудозатраты при расчете уравнений, решателям нужна оптимизированная последовательность уравнений. Этот процесс оптимизации обычно выполняется во время генерации самой расчетной системы. По умолчанию модули SOFIMSHA/C генерируют ту последовательность уравнений, которая подходит для применения прямого LDL решателя разреженной системы (3). Что касаемо решателей (1) или (2), то для их применения необходима профильно-ориентированная последовательность решаемых уравнений, которая может быть сгенерирована при помощи команды (CTRL OPTI 1) или (CTRL OPTI 2) во время создания самой расчетной системы. Правильное положение всех уравнений в необходимой последовательности проверяется программой автоматически, а в случае если такая последовательность уравнений будет недоступна, программа выдаст предупреждение.

Итерационный (CTRL SOLV 2) и параллельный решатель разреженных систем (CTRL SOLV 4) можно запускать параллельно, уменьшая тем самым время расчета системы. Для параллельного запуска решателей в большинстве случаев требуется лицензия типа «HISOLV». Дополнительную информацию о параллельном запуске решателей можно найти в п.п. 3.4.2 данного руководства, в котором более подробно описана значимость вводной команды CTRL CORE.
Решатели уравнений выбираются при помощи команды \textit{CTRL SOLV}. Первое значение определяет тип решателя (1, 2, 3 или 4), а затем вводятся дополнительные параметры.

Таблица 3.4.1.1 – Прямой решатель систем линейных уравнений с матрицами профильного хранения (методы Гаусса/Холецкого)

<table>
<thead>
<tr>
<th>SOLV (Решатель)</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>1 Прямой решатель систем линейных уравнений с матрицами профильного хранения (методы Гаусса/Холецкого)</td>
<td>-</td>
<td>!</td>
</tr>
</tbody>
</table>

Никаких дополнительных параметров для запуска решателя 1 не требуется. Однако для оптимизации количества вычислительных операций в модулях \textit{SOFIMSHA/C} необходимо задействовать команду (\textit{CTRL OPTI 1}) или (\textit{CTRL OPTI 2}), чтобы минимизировать время расчета уравнений, а также требования к месту хранения полученных результатов.

Таблица 3.4.1.2 – Итерационный решатель

<table>
<thead>
<tr>
<th>SOLV (Решатель)</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>2 Итерационный решатель</td>
<td>-</td>
<td>!</td>
</tr>
<tr>
<td>V2</td>
<td>Максимальное количество итераций</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>V3</td>
<td>Сходимость численных результатов – количество знаков после запятой (от 5 до 15)</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>V4</td>
<td>Тип предварительной подготовки системы: 0 Диагональное масштабирование (не рекомендуется)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SOLV (Решатель)</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>По умолчанию</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| V5 | 1 Метод неполного разложения Холецкого
2 Неполная инверсия | - | * |
| V6 | Предельное значение предварительно обработанной системы | - | * |
| | Максимальная ширина полосы пропускания в предварительно обработанной системе | | |

Итерационный решатель использует метод сопряженных градиентов в сочетании с методами предварительной подготовки системы. Для предварительной подготовки используются следующие методы:

- **Диагональное масштабирование** (*V4 = 0*)
 Хоть это и один из самых быстрых метод обработки с минимальными требованиями, предъявляемые к памяти, все равно в процессе его использования производится значительное количество итерационных процессов, поэтому для большинства случаев применение данного метода не рекомендуется.

- **Метод неполного разложения Холецкого** (*V4 = 1*)
 Данный тип предварительной подготовки выполняет частичную триангуляцию входной матрицы. По сравнению с полной триангуляцией по методу Холецкого, метод неполного разложения экономит время обработки данных, игнорируя так называемый процесс *Fill-In* (подбор/согласование) при разложении матрицы.

- **Неполная инверсия** (*V4 = 2*)
 Данный тип предварительной подготовки в большинстве случаев уступает по показателям эффективности методу Холецкого. Это касается
как скорости сходимости, так и времени, требуемого для вычисления инверсий. Однако, при обработке матриц больших объемов данный метод имеет более эффективные показатели по сравнению с другими, рассмотренными ранее методами (рекомендуемый порог V5: 0,01).

Абсолютно при любых предварительно заданных условиях количество матричных элементов, учитываемых в ходе предварительной обработки, может быть уменьшено путем задания относительного порогового значения V5, либо путем ввода максимального значения ширины полосы пропускания V6. Выбор того или иного способа уменьшения количества матричных элементов зависит от типа конструкции, а значения параметра V5 или V6 может быть определено только по результатам некоторых внутренних тестов.

Примечание

Правильность и точность результатов, полученных при использовании итерационного решателя, зависит, прежде всего, от пороговых значений. Поэтому изменение значения параметра V3, установленного программой по умолчанию, не рекомендуется. В любом случае, во избежание ошибок расчетчику/проектировщику требуется собственоручно проанализировать и оценить результаты вычислений.

Таблица 3.4.1.3 – Прямой LDL решатель разреженных систем (по умолчанию)

<table>
<thead>
<tr>
<th>SOLV (Решатель)</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>3 Прямой LDL решатель разреженных систем</td>
<td>-</td>
<td>!</td>
</tr>
</tbody>
</table>

Дополнительные параметры для запуска данного решателя не требуются. Модули, используемые при создании конечно-элементной сетки, SOFiMSHA/C генерируют соответствующую нумерацию/последовательность уравнений по
умолчанию, которая необходима для работы данного типа решателя. Прямой решатель разреженных систем минимизирует так называемый процесс Fill-In (подбор/согласование) матрицы.

Таблица 3.4.1.4 – Параллельный прямой решатель разреженных систем – PARADISO

<table>
<thead>
<tr>
<th>SOLV (Решатель)</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>WERT</td>
<td>3 Параллельный прямой решатель разреженных систем</td>
<td>-</td>
<td>!</td>
</tr>
</tbody>
</table>

Для процесса работы решателя PARDISO могут быть использованы высокопроизводительные библиотеки Intel Math Kernel Library MKL. Обычно использование подобных библиотек данных позволяет минимизировать время вычислений. Это не требует априори оптимизации последовательности уравнений во время генерации расчетной системы. Это значит, что оптимизация уравнения в модуле SOFiMSHA/C также может быть отключена при помощи команды CTRL OPTI 0, что позволит увеличить объем оперативной памяти, задействованной для генерации расчетной системы. С другой стороны, этот решатель не позволяет повторно использовать факторизованную матрицу жесткости в других модулях ПК SOFiSTiK. Таким образом, использование данного решателя совместно с модулем ELLA невозможно.

3.4.2 CORE – Параллельный контроль вычислительных процессов

<table>
<thead>
<tr>
<th>CORE</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>Количество задействованных потоков</td>
<td>-</td>
<td>*</td>
</tr>
</tbody>
</table>

В ПК SOFiSTiK имеется возможность параллельного запуска вычислительных операций для используемых решателей уравнений. Помимо этого, некоторые модули также имеют возможность параллельной обработки
элементов системы – независимо от выбранного решателя уравнений (CTRL SOLV).

Активация параллельных вычислений

По умолчанию параллельные вычисления запускаются автоматически там, где это возможно.

Для запуска параллельных вычислений системы требуются соответствующие мощности ЭВМ и операционная система. Также обязательным условием для запуска является наличие соответствующей лицензии SOFiSTiK.

Примечание

Для запуска параллельных вычислений требуется наличие лицензии HISOLV (часть ISOL).

Количество доступных потоков для параллельных вычислений

Если процесс параллельных вычислений запущен, количество задействованных потоков определяется следующим образом (данные методы рассмотрены в порядке эффективности их использования):

а) Соответствующее программное обеспечение находит всю необходимую информацию о количестве доступных физических процессоров (Физический процессор – устройство, чип, выделенный специализированный процессор, предназначенный для обработки <<физических>> вычислений преимущественно в физических движках) в системе. Это количество и определяет число потоков по умолчанию, которое используется при параллельном вычислении.

б) Количество потоков, по умолчанию, может быть изменено при помощи внешней переменной SOF_NUM_THREADS, которая также доступна пользователю, как и параметр sofistik.def.
Использование явного оператора *CTRL CORE NN* (или относительного ввода *CTRL CORE NN [%]*) позволяет временно задать нужное количество потоков для соответствующего расчетного процесса.

<table>
<thead>
<tr>
<th>Примечание</th>
</tr>
</thead>
</table>
| Ни *b)*, ни *c)* не позволяют запустить параллельные вычисления системы. Решение данной проблемы зависит от значений фактических результатов, полученных в ходе анализа системы (параллельная обработка системы напрямую зависит от конкретных условий решаемой задачи), и наличия соответствующей лицензии. Параллельное вычисление можно отключить, установив количество доступных потоков выполнения на 1 (или 0).

<table>
<thead>
<tr>
<th>Функции, используемые при параллельном решении уравнений</th>
</tr>
</thead>
<tbody>
<tr>
<td>Решатель</td>
</tr>
<tr>
<td>Гаусса/Холецкого</td>
</tr>
<tr>
<td>Итерационный</td>
</tr>
<tr>
<td>LDL разреженных систем</td>
</tr>
<tr>
<td>Параллельный реш-ль разреженных систем</td>
</tr>
</tbody>
</table>

3.5 *GRP* – Выбор групп элементов

См. также: *ECHO, CTRL, MASS, EIGE, MODD, STEP, LC, CONT, HIST, EXTR*
<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OFF Не используются</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YES Используются, но без</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>отображения результатов анализа</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FULL Используются с отображением</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>результатов анализа</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOIL Элементы, определяющие</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>границу в полупространстве для SBFEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Порядковый номер этапа возведения</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>сооружения</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACS</td>
<td>Коэффициент влияния групповой</td>
<td>-</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>жесткости элементов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HING</td>
<td>Блокировка шарниров в балке</td>
<td>Lit16</td>
<td>-</td>
</tr>
<tr>
<td>RADA</td>
<td>Пропорциональное демпфирование массы</td>
<td>1/сек</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>сек</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>RADB</td>
<td>Пропорциональное демпфирование</td>
<td>-</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>жесткости</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODD</td>
<td>Демпфирование форм колебаний –</td>
<td>-</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>модальное демпфирование</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACP</td>
<td>Коэффициент влияния главных</td>
<td>-</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>напряжений</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACM</td>
<td>Коэффициент влияния массы группы</td>
<td>-</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>элементов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIND</td>
<td>Ввод ветрового воздействия на</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>сооружение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMAX</td>
<td>Ограничение гибкости элемента при</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>продольном изгибе</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSCP</td>
<td>Номер узла, определяющий положение</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>расчетного участка для метода SBFEM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Если элементы небыли сгруппированы пользователем собственноручно, то в процессе анализа будут задействованы все элементы. Если все же группы были созданы, то анализу будут подвержены только указанные пользователем группы элементов. Данная особенность динамического анализа системы в ПК SOFiSTiK должна быть учтена в обязательном порядке в случае, когда некоторым группам элементов присвоено свойство демпфирования.

Элементы некоторых групп могут обладать двумя типами демпфирования. Значение параметра $RADA$ характеризует пропорциональное демпфирование массы, находящегося под внешним воздействием, и, следовательно, отклонение системы от равновесия (например, воздействие воздушных или водных потоков на систему). Значение параметра $RADB$ характеризует пропорциональное демпфирование жесткости системы при внутренних ее колебаниях (демпфирование колебаний в самом материале).

Как правило, значение геометрической жесткости элемента, полученное от действия внутреннего (предварительного) напряжения в материале, не умножается на значение параметра $RADB$ – демпфирование колебаний. Из всех элементов системы только предварительно напряженный кабель (нить) участвует в процессе демпфирования.

$$C = RADA \cdot m + RADB \cdot K;$$

$$\frac{кНсек}{м} = \frac{1}{сек} \cdot \frac{Нсек^2}{м} + \frac{сек \cdot кН}{м}. $$

Для анализа форм колебаний (модального анализа) можно указать значение модального демпфирования каждой группы элементов. Далее эти значения, учитывая значения масс элементов групп, преобразуются в приближенный эквивалент модального демпфирования собственной формы колебаний всей расчетной системы в целом.

Более подробную информацию о процессе демпфирования колебаний системы вы найдете в п.п. 3.11 данного руководства.

Описание полупространства при помощи «метода создания расчетного участка в конечно-элементной модели» (SBFEM – Scaled Boundary Finite Element...
Метод) позволяет определить соответствующие статические и динамические свойства бесконечного пространства с учетом свойств демпфирования колебаний. Команда GRP позволяет выбрать граничные элементы для 2D-анализа или плоские QUAD элементы для 3D-анализа системы, определяющие границу анализируемого полупространства. Локальная ось z должна отображаться в направлении полупространства. Без определения значения параметра NSCP точка, определяющая положение расчетного участка, будет располагаться в центре верхних частей грунтовых слоев. Более подробную информацию об использовании метода SBFEM смотрите в [8].

3.6 MAT – Общие свойства материала

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Номер материала</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Модуль упругости</td>
<td>кН/м2</td>
<td>*</td>
</tr>
<tr>
<td>MUE</td>
<td>Коэффициент Пуассона (от 0,00 до 0,49)</td>
<td>-</td>
<td>0,20</td>
</tr>
<tr>
<td>G</td>
<td>Модуль сдвига</td>
<td>кН/м2</td>
<td>*</td>
</tr>
<tr>
<td>K</td>
<td>Модуль объёмной упругости</td>
<td>кН/м2</td>
<td>*</td>
</tr>
<tr>
<td>GAM</td>
<td>Удельный вес</td>
<td>кН/м3</td>
<td>25</td>
</tr>
<tr>
<td>$GAMA$</td>
<td>Удельный вес с учетом взвешивающего действия воды</td>
<td>кН/м3</td>
<td>*</td>
</tr>
<tr>
<td>$ALFA$</td>
<td>Коэффициент температурного расширения</td>
<td>$1/\rho K$</td>
<td>$E-5$</td>
</tr>
<tr>
<td>EY</td>
<td>Модуль упругости анизотропного материала Ey</td>
<td>кН/м2</td>
<td>E</td>
</tr>
<tr>
<td>MXY</td>
<td>Коэффициент Пуассона анизотропного материала m-xy</td>
<td>-</td>
<td>MUE</td>
</tr>
</tbody>
</table>
Команда | Описание | Ед. изм. | По умолчанию
--- | --- | --- | ---
OAL | Угол между меридианом и локальной осью x в анизотропном материале | град. | 0
OAF | Угол падения относительно локальной оси x в анизотропном материале | град. | 0
SPM | Коэффициент запаса по материалу | - | 1,00
TITL | Наименование материала | Lit32 | -

Материалы, которые характеризуют SVAL или QUAD и BRIC элементы, могут быть введены в модель при помощи команд MAT и MATE. Номер, присвоенный пользователем конкретному материалу, не характеризует другие подобные материалы.

Различием между командами MAT и MATE является размерность прочностной характеристики рассматриваемого материала. Команда MATE отвечает за моделирование CONC (бетон), STEE (сталь) и т. д. (МПа), а также позволяет задать дополнительные параметры прочности. Команда MAT отвечает за моделирование нелинейных свойств материала (кН/м²) – команда NMAT (анализ нелинейных свойств материала). Ортотропные параметры материала, используемые в команде MAT, имеют более старые названия.

3.7 BMAT – Упругое основание/Зона контакта/Граница раздела двух тел

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Номер материала</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>Упругая постоянная нормали к поверхности C_s</td>
<td>кН/м³</td>
<td>0.</td>
</tr>
<tr>
<td>Команда</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>По умолчанию</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>CT</td>
<td>Упругая постоянная касательной к поверхности (C_t)</td>
<td>кН/м(^3)</td>
<td>0.</td>
</tr>
<tr>
<td>CRAC</td>
<td>Максимальное растягивающее напряжение на границе раздела</td>
<td>кН/м(^2)</td>
<td>0.</td>
</tr>
<tr>
<td>YIEL</td>
<td>Максимальное напряжение на границе раздела</td>
<td>кН/м(^2)</td>
<td>-</td>
</tr>
<tr>
<td>MUE</td>
<td>Коэффициент трения на границе раздела</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>COH</td>
<td>Сцепление на границе раздела</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DIL</td>
<td>Коэффициент дилатансии</td>
<td>-</td>
<td>0.</td>
</tr>
<tr>
<td>GAMB</td>
<td>Распределенная приведенная/эквивалентная масса</td>
<td>т/м(^3)</td>
<td>0</td>
</tr>
</tbody>
</table>
| *TYPE* | Модели грунтового основания: | | *
| *PRESS* | Плоское напряженное состояние | | |
| *PAIN* | Плоско-деформированное состояние | |
| *HALF* | Круговая плоскость в полупространстве | |
| *CIRC* | Круговое отверстие в бесконечной плоскости | |
| *SPHE* | Сферическое отверстие в бесконечной плоскости | |
| *NONE* | без всего | |
| *MREF* | Номер эталонного материала | - | *NO* |
| *H* | Эталонный размер элемента (толщина \(H \) или радиус \(R \)) | м | ! |
Команда **BMAT** позволяет задать значения свойств материала (например, **MATE/CONC/BRIC**), используемого в качестве упругого основания. Таким образом, одному плоскому **QUAD** элементу, с соответствующим номером, можно предать свойства фундаментной плиты и грунтового основания. Для материалов основания, не обладающих какими-либо дополнительными свойствами, ввод в систему команды **BMAT** является вторым этапом преобразования упругой постоянной материала в упругую постоянную основания. То же касается геометрических и топологических характеристик. Также данный этап необходим, если это потребуется, для определения постоянных значений – констант. Однако, для подобного случая определение характеристик элемента прямым методом является более приемлемым, чем все остальные. Грунтовое основание под сооружение рассчитывается по формулам теории упругости (Винклер, Циммерман, Пастернак). Данная особенность позволяет облегчить расчет упругих оснований путем игнорирования значений деформаций сдвига, возникающие в опорной поверхности фундамента – плоскости опирания фундамента на грунт. Грунтовое основание может быть прикреплено к балочным или плитным элементам расчетной системы, но в большинстве случаев оно все равно будет восприниматься программой, как отдельный элемент. (смотрите **SPRI**, **BOUN**, **BEAM** или **QUAD** элементы; более общее описание сморите в настройках скважин – **BORE**).

В процессе определения приемлемого значения коэффициента постели часто возникают некоторые трудности, так как оно зависит не только от параметров материала, но также от геометрических характеристик и нагрузок. Эту зависимость необходимо всегда учитывать при оценке точности результатов анализа, проводимы согласно всем условиям рассматриваемой теории.

Параметры грунтового основания **C** и **CT** используются для моделирования грунтовых слоев в виде плоских **QUAD** элементов или описания условий опирания или граничных условий. Таким образом, плоский **QUAD** элемент, представленный в виде сплошной фундаментной плиты, будет обладать свойствами определенного материала, а при помощи команды **BMAT** будут
учтены свойства грунта основания, на который опирается фундаментная плита. Воздействие параметра C в большинстве случаев направлено перпендикулярно поверхности QUAD элемента – в направлении локальной оси z. В то же время параметр CT действует во всех направлениях сдвига в плоскости QUAD элемента.

Если по краю материала грунта вводят параметры грунтового основания, то, в зависимости от ширины и расстояний между опорными узлами, пружинные элементы будут сформированы вдоль этого края.

В случаях с постоянным значением давления, воздействующим на образец грунта, у которого основными характеристиками являются модуль упругости и коэффициент Пуассона μ, вместо прямого ввода характеристик вы можете использовать стандартный/эталонный образец:

- Плоский слой с граничными условиями по горизонтали. Применяется, например, при моделировании упругого основания под колоннами и подпорными стенками (плоское напряженное состояние):

 \[C_s = \frac{E}{H} \cdot \frac{1}{(1+\mu)(1-\mu)} \quad C_t = \frac{E}{H} \cdot \frac{1}{2(1+\mu)} \]

 (3.1)

- Плоский слой с граничными условиями по горизонтали при осадке слоев грунта (плоское деформированное состояние):

 \[C_s = \frac{E}{H} \cdot \frac{(1-\mu)}{(1+\mu)(1-2\mu)} \quad C_t = \frac{E}{H} \cdot \frac{1}{(1+\mu)} \]

 (3.2)

- Эквивалентная круговая плоскость радиусом R в бесконечном полупространстве:

 \[C_s = \frac{E}{R} \cdot \frac{2}{\pi(1+\mu)(1-\mu)} \]

 (3.3)

- Круглое отверстие радиусом R в бесконечной плоскости в условиях плоской деформации (устройство труб или свай в грунте):

 \[C_s = \frac{E}{R} \cdot \frac{1}{(1+\mu)(1-2\mu)} \quad C_t = C_s \]

 (3.4)
• Spherical hole of radius \(R \) in an elastic 3D solid medium:

\[
C_s = \frac{E}{R} \cdot \frac{2}{(1+\mu)} \quad C_t = C_s
\]

(3.5)

The same applies with the dilatancy coefficient, which characterizes the change in volume due to shear deformations. At the presence of stress values in the ground foundation and depending on vertical and horizontal displacements, we have the following equations:

\[
\sigma = C_s \cdot (u_s + DIL \cdot u_t) \quad \tau = C_t \cdot u_t
\]

(3.6)

Nonlinear effects are controlled by commands \textit{CRAC}, \textit{YIEL}, \textit{MUE} and \textit{COH}:

Crack formation: Upon reaching the critical stress, the layer separation is turned off, both in the longitudinal and transverse directions. The critical load is always the reason for the appearance of tensile stresses in the layers. If the reaction force of the ground foundation is applied to a planar \textit{QUAD} element, the deformations that occur in the direction of the local z-axis create compressive (negative) stresses.

Strength/ductility limit: Upon reaching the strength limit, the principal component of the layer separation boundary increases without an increase in the stress value. Friction/tack: The coefficient of friction or the friction coefficient, the stress value at the transverse

\begin{array}{l}
\text{Strength/ductility limit:} \\
\text{Upon reaching the strength limit, the principal component of the layer separation boundary increases without an increase in the stress value.} \\
\text{Friction/tack:} \\
\text{Determining the coefficient of friction or the friction coefficient, the stress value at the transverse}
\end{array}
сдвиге не может быть больше, чем:

\[\text{Коэффициент трения} \times \text{нормальное напряжение} + \text{сцепление} \]

Нужно обратить внимание на то, что до достижения данного предельного значения при жесткости \(CT \) напряжение при поперечном сдвиге будет возникать только при наличии деформации.

Если главная граница разделения выключается из работы (\(CRAC \)), то боковое воздействие в грунтовом основании возникает только в том случае, если значение коэффициента трения, как и коэффициента сцепления равны 0,0.

Нелинейные эффекты могут учитываться только при нелинейном анализе. Трение является эффектом, характеризующим боковую поверхность грунтового основания, в тот момент, когда все остальные эффекты действуют в основном/главном направлении грунтовых слоев.

3.8 SMAT–SBFEM – Свойства материала

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NO)</td>
<td>Номер материала</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>(LC)</td>
<td>Определяющий линейный размер</td>
<td>м</td>
<td>!</td>
</tr>
<tr>
<td>(EX)</td>
<td>Модуль упругости в направлении (X)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(EY)</td>
<td>Модуль упругости в направлении (Y)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(EZ)</td>
<td>Модуль упругости в направлении (Z)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(RHOX)</td>
<td>Коэффициент сгущения в направлении (X)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(RHOL)</td>
<td>Коэффициент сгущения в направлении (Y)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(RHOZ)</td>
<td>Коэффициент сгущения в направлении (Z)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Команда</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>По умолчанию</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>ALF</td>
<td>Неоднородная упругость материала</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>BET</td>
<td>Неоднородность плотности материала</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Команда **SMART** определяет зависимость между параметрами материала при **SBFEM**:

\[
E = E_{ref} \cdot \left[E_x \left(\frac{|x|}{L_c} \right)^\alpha + E_y \left(\frac{|y|}{L_c} \right)^\alpha + E_z \left(\frac{|z|}{L_c} \right)^\alpha \right]. (3.7)
\]

\[
\rho = \rho_{ref} \cdot \left[\rho_x \left(\frac{|x|}{L_c} \right)^\alpha + \rho_y \left(\frac{|y|}{L_c} \right)^\alpha + \rho_z \left(\frac{|z|}{L_c} \right)^\alpha \right]. (3.8)
\]

3.9 MASS – Сосредоточенные массы

См. также: **ECHO, GRP, CTRL, EIGE, MODD, STEP, LC, CONT, HIST, EXTR**

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Номер узла</td>
<td>-</td>
<td>!</td>
</tr>
<tr>
<td>MX</td>
<td>Поступательная масса</td>
<td>т</td>
<td>0.</td>
</tr>
<tr>
<td>MY</td>
<td>Поступательная масса</td>
<td>т</td>
<td>MX</td>
</tr>
<tr>
<td>MZ</td>
<td>Поступательная масса</td>
<td>т</td>
<td>MX</td>
</tr>
<tr>
<td>MXX</td>
<td>Вращающаяся масса</td>
<td>тм²</td>
<td>0.</td>
</tr>
<tr>
<td>MYY</td>
<td>Вращающаяся масса</td>
<td>тм²</td>
<td>0.</td>
</tr>
<tr>
<td>MZZ</td>
<td>Вращающаяся масса</td>
<td>тм²</td>
<td>0.</td>
</tr>
<tr>
<td>MXY</td>
<td>Вращающаяся масса</td>
<td>тм²</td>
<td>0.</td>
</tr>
<tr>
<td>MXZ</td>
<td>Вращающаяся масса</td>
<td>тм²</td>
<td>0.</td>
</tr>
<tr>
<td>MYZ</td>
<td>Вращающаяся масса</td>
<td>тм²</td>
<td>0.</td>
</tr>
<tr>
<td>MB</td>
<td>Вращающаяся масса</td>
<td>тм²</td>
<td>0.</td>
</tr>
<tr>
<td>LC</td>
<td>Случай загружения из CDB</td>
<td>-</td>
<td>!</td>
</tr>
<tr>
<td>PRZ</td>
<td>Процент постоянной нагрузки от значения массы</td>
<td>LIT/-</td>
<td>100</td>
</tr>
</tbody>
</table>

101
<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELE</td>
<td>PSI0, PSI1, PSI2 (комбинирование значений)
Выбор направления действия нагрузки PG, PXX, PYY, PZZ (поступательное)
 M-XX, M-YY, M-ZZ (вращательное)
 ALL (каждый компонент обособленный)</td>
<td>LIT</td>
<td>PG</td>
</tr>
</tbody>
</table>

Сосредоточенные массы являются дополнительными к первичным массам, заданные в модуле **SOFIMS** в базе данных программы. Они сохраняются после нескольких вводов соответствующих данных, пока они не будут переопределены пользователем. Они (массы) не используются в качестве собственного веса в случаях статического загружения системы, а также как первичные массы. Помимо этого, рассматриваемые массы, имеют групповой номер в команде **GRP** (п.п. 3.5) (позволяющий определять пропорциональное демпфирование масс), но они всегда активны. Параметр **MASS 0** может использоваться для удаления всех временных масс, поэтому первичные массы берутся из модуля **SOFIMS**.

Одна и та же масса, как правило, действует во всех трех координатных направлениях и, следовательно, она должна определяться независимо и только в особых случаях. Вращательные массы с наклонной осью будут иметь диагональные массы от *MXY* до *MYZ*.

Собственный вес всего сооружения распознается программой, как поступательная масса. Если возникает необходимость ввода в систему вращательных масс, то они должны задаваться пользователем отдельно при помощи команды **MASS** или **CTRL MCON 3**. Если собственный вес конструкции не распознан программой, то это значит, что значение собственного веса материала или поперечного сечения приравнено к нулю.
Команда MASS может быть также использована для импорта в модуль DYNA узловых нагрузок из базы данных в виде масс. Далее необходимо задать номер загружения при помощи параметра LC. Значения параметров MX, MY и MZ, значения которых по умолчанию равны 1,0, являются факторами, характеризующими особенности масс в характерных направлениях X, Y и Z, которые генерируются в результате действия нагрузок, приложенных в направлении собственного веса. Если пользователю потребуется преобразовать другие нагрузки, действующие в определенных направлениях, в массы, то эти направления должны быть указаны дополнительно при помощи параметра SELE. Ввод подобного условия в систему на языке CADINP выглядит следующим образом:

MASS LC 12 PSI2

Данная запись позволяет ввести в систему поступательные массы от всех нагрузок, включенные в случай загружения LC12, действующие в направлении собственного веса. Если случаю загружения присвоено определенное постоянное значение ψ2, то оно будет рассматриваться программой как коэффициент.

В отличие от условий, прописанных ранее на языке CADINP, данный ввод

MASS LC 12 SELE PZ MX 1.0 0.5 1.0
MASS LC 13 50[%] SELE PY MX 0.0 1.0 0.0

позволяет ввести в систему массы (t), действующие в направлениях x и z из всех нагрузок PZ (КН), входящих в состав случая загружения LC12. Однако, только половина масс активируется в направлении y. Вторая строка кода обрабатывает 50% PY-нагрузок случая загружения LC13 только в направлении Y.

Массы также могут распознаваться программой, как факторы/коэффициенты при помощи команды MASS. Для этой цели используется параметр FACT, соответствующий определенному значению параметра NO (п.п. 3.13). Применение подобных возможностей программы особенно целесообразно при очень крупных расчетных системах. Это выгодно при подавлении большого количества низких частот, которые не имеют существенного влияния на
результаты динамического анализа. Ввод в систему выглядит следующим образом:

MASS FACT MZ 0.01

Масса в глобальном направлении оси z уменьшается только на один процент.

3.10 EIGE – Собственные значения и собственные вектора

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEIG</td>
<td>Количество искомых собственных значений</td>
<td>-</td>
<td>!</td>
</tr>
<tr>
<td>TYPE</td>
<td>Методы расчета собственных значений</td>
<td>LIT</td>
<td>SIMU</td>
</tr>
<tr>
<td></td>
<td>REST Собственные значения уже доступны</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIMU Одновременная векторная итерация</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LANC Метод Ланцоша</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAYL Минимальный коэффициент Релея</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEUL Потеря устойчивости</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BESI Потеря устойчивости (вектор итерации)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BELL Потеря устойчивости (Ланцош)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BERA Потеря устойчивости (Релей)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITE</td>
<td>Количество итераций векторов Ланцоша</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>MITE</td>
<td>Максимальное количество итераций и функций</td>
<td>-</td>
<td>*</td>
</tr>
</tbody>
</table>
Команда | Описание | Ед. изм. | По умолчанию
--- | --- | --- | ---
LMIN | Сдвиг собственных значений | 1/сек² | 0
STOR | Количество собственных форм, которые должны быть сохранены | - | *NEIG*
LC | Номер загружения наименьшей собственной формы | - | 1
LCUP | Номер загружения наибольшей собственной формы колебаний | - | *

Ввод параметра *EIGE* активирует запрос для расчета собственных значений и форм колебаний системы. Если собственные вектора уже рассчитаны, то нужно ввести команду *TYPE REST*. Этому следует уделить особое внимание при импорте собственных значений из модуля *ASE*.

Собственные значения и формы могут описывать динамические формы колебаний или собственные формы потери устойчивости системы. В тот момент, когда первая задача связана с правильным заданием положительно определенной матрицы масс, вторая сталкивается с неопределенными геометрическими матрицами жесткости (отрицательными собственными значениями), в результате чего возникают некоторые трудности при анализе систем. Для решения подобных проблем наиболее рациональным будет использование методов *SIMU* и *RAYL*, так как данные методы обладают некоторыми характерными особенностями. В любом случае, пользователь должен начать с расчета нескольких собственных значений системы.

Все собственные вектора должны быть единовременно сохранены в памяти ЭВМ, поэтому, при решении сложных задач необходимо удостовериться в наличии достаточного количества памяти. Формы колебаний также могут быть сохранены в базе данных, как и статические случаи загружения, а затем они могут быть представлены графически в виде деформированной конструкции.
Модальная оценка усилий, возникающих в расчетной системе, возможна только тогда, когда все соответствующие формы колебаний сохранены в базе данных в виде значений напряжений или усилий в элементах.

С другой стороны, в процессе анализа также могут быть включены расчетные зоны влияния для обработки выборочной точки опирания сооружения, к которой приложено возбуждающее усилие, или другие особые случаи. В подобных случаях номера загружений \(LC \) должны следовать за загружениями, соответствующие собственным формам колебаний, и могут запрашиваться при помощи вводной команды \(LCUP \).

Задача, связанная с поиском собственных значений, может быть сдвинута на один этап анализа по значимости. Подобная возможность ПК \(SOFiSTiK \) находит применение в анализе сооружений, которые не имеют опирания или основания (нулевое собственное значение является наименьшим значением), а также в проверке количества собственных значений при помощи последовательности или ряда Штурма. Влияние количества пропущенных собственных значений проявляется в процессе смены знака детерминанты (определителя), соответствующего номера собственного значения.

Выбор метода для анализа собственных значений зависит от числа собственных значений. В большинстве случаев используется одновременная векторная итерация. Число итераций может быть уменьшено, если в процессе итерации собственных значений используется несколько увеличенное подпространство. По этой причине значение параметра \(NITE \), по умолчанию, установлено минимальным между значением параметра \(NEIG+2 \) и числом неизвестных. Процесс итерации завершается тогда, когда в него включено максимальное количество итерационных этапов (максимальное количество, по умолчанию, \((15,2 \cdot NITE) \)) или, когда наибольшее собственное значение изменено на коэффициент, который меньше 0,00001 по сравнению с предыдущей итерацией.

Для поиска большого количества собственных значений метод Ланцоша является наиболее приемлемым, в плане скорости, чем векторная итерация.
Хорошая точность, полученных результатов, достигается, когда число векторов Ланцоша – параметр \textit{NITE}, как минимум, в два раза больше искомых собственных значений (по умолчанию) – параметр \textit{NEIG}. В случае равенства \textit{NITE} = \textit{NEIG}, в отличие от метода векторной итерации, более высокие собственные значения в большинстве случаев уже бесполезны.

Применение метода Рэлея особенно целесообразно, если требуется определить лишь несколько собственных значений, и, если имеются отрицательные собственные значения. Данный метод задействует итерационный решатель, для применения которого требуется специальная лицензия \textit{ISOL} и прямая оптимизация системы (\textit{CTRL OPTI 1}). Однако, он (метод Рэлея) может обрабатывать и анализировать очень большие по объему расчетные системы с наименьшими требованиями к памяти ЭВМ.

Если первичный случай загружения \textit{PLC} введен в систему при помощи команды \textit{CTRL PLC}, значение геометрической начальной жесткости включено в анализ собственных значений. В результате, становится известна нулевая частота системы, но только в том случае, если расчетная система максимально приближена к состоянию потери устойчивости.

Однако, несмотря на все особенности подобного состояния расчетной системы – потеря устойчивости, можно оценить собственную форму колебаний при помощи команды \textit{TYPE BEUL} (или используя для этого конкретные методы \textit{BELL}, \textit{BESI} или \textit{BERA}). Продольный изгиб с кручением \textit{BERA} – лучший способ подавления (снизить влияние) отрицательных собственных значений.

Таблица 3.10.1 – Обзор методов анализа собственных значений

<table>
<thead>
<tr>
<th></th>
<th>Векторная итерация</th>
<th>Ланцош</th>
<th>Релей</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кол-во собственных значений</td>
<td>среднее</td>
<td>высокое</td>
<td>небольшое</td>
</tr>
<tr>
<td>Ряд множества собственных значений</td>
<td>метод Ритца при решении дополнительных задач</td>
<td>без проблем</td>
<td>иногда возникают проблемы</td>
</tr>
<tr>
<td>Кратное собственное значение</td>
<td>да</td>
<td>да</td>
<td>да</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Неподходящие собственные значения</td>
<td>очень редко</td>
<td>редко</td>
<td>очень редко</td>
</tr>
<tr>
<td>Отрицательные собственные значения</td>
<td>да</td>
<td>не работает</td>
<td>только положительные значения</td>
</tr>
<tr>
<td>Требования к памяти</td>
<td>среднее</td>
<td>большое</td>
<td>небольшое</td>
</tr>
<tr>
<td>Скорость анализа</td>
<td>средняя</td>
<td>высокая</td>
<td>переменная</td>
</tr>
</tbody>
</table>

3.11 MODD – Модальное демпфирование/демпфирование форм колебаний

См. также: \textit{ECHO, GRP, CTRL, EIGE}

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{NO}</td>
<td>Номер собственного значения</td>
<td>-</td>
<td>Всё</td>
</tr>
<tr>
<td>\textit{D}</td>
<td>Прямое демпфирование форм колебаний по Леру</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>\textit{A}</td>
<td>Пропорциональное демпфирование масс</td>
<td>1/сек</td>
<td>0</td>
</tr>
<tr>
<td>\textit{B}</td>
<td>Пропорциональное демпфирование жесткости</td>
<td>сек</td>
<td>0</td>
</tr>
<tr>
<td>\textit{PERS}</td>
<td>Постоянное значение</td>
<td>\textit{LIT}</td>
<td>Y</td>
</tr>
</tbody>
</table>

\textit{Y/N = YE/NO}

Затухание/демпфирование может быть введено в систему в составе команды \textit{GRP} с различными значениями для каждой группы элементов. Только после прямой интеграции эти значения станут эффективными. В процессе модального анализа, несмотря на все вышеприведенные условия, модальное затухание будет
рассчитываться только после расчета собственных значений системы, исходя из определенных пользователем величин затухания посредством процесса диагонализации матриц. Каждая собственная форма колебаний будет иметь одну отличную величину модального затухания.

Однако, модальное затухание (коэффициент затухания по Леру) также может быть задано пользователем отдельно для каждой формы колебаний при помощи трех независимых частей (прямое демпфирование D, пропорциональные демпфирования масс A и жесткости B). Все значения, введенные в расчетную систему, сохраняются в базе данных программы. Определение величины модального затухания повлияет на демпфирующие свойства расчетной системы – изменятся все значения характеристик затухания, которые были введены ранее в составе команды GRP, или, изменятся характеристики явных демпфирующих элементов системы!

В большинстве случаев все значения, приведенные в литературе, рассматриваются как величины модального затухания или логарифмические декременты δ:

$$d_i = \frac{\delta}{2\pi} = D + \frac{1}{2} \cdot \frac{A}{\omega_i} + \frac{1}{2} \cdot B \cdot \omega_i.$$ \hfill (3.9)

На рисунках, приведенных ниже в руководстве, можно увидеть зависимость параметров A и B от собственных частот колебаний SDOF системы. Затухание/демпфирование системы представлено как логарифмический декrement δ, который характеризует соотношение между двумя последовательными значениями амплитуд $A1$ и $A2$.

Логарифмический декrement:

$$\delta = \log \left[\frac{A1}{A2} \right].$$ \hfill (3.10)
Декrement δ связан с модальным затуханием с учетом коэффициента 2π. Обычно величина модального затухания D имеет следующие значения [9]:

<table>
<thead>
<tr>
<th>Условия упругости [%]</th>
<th>Условия пластичности [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Армированный бетон</td>
<td>1,00-2,00</td>
</tr>
<tr>
<td>Предварительно напряженный бетон</td>
<td>0,80</td>
</tr>
<tr>
<td>Сборные металлконструкции</td>
<td>1,00</td>
</tr>
<tr>
<td>Сварные металлконструкции</td>
<td>0,40</td>
</tr>
</tbody>
</table>
Примечание

Команда MODD должна быть введена в систему как абсолютная величина или с явной единицей измерения [%]!

При прямом интегрировании без собственных значений отсутствует модальное затухание/демпфирование, поэтому необходимо преобразовать заданную величину демпфирования в параметры A и B. Преобразование параметров в A и B можно наблюдать на следующем графике.

Рис. 3.2 – Изменение параметров A и B

При достижении 10%-ого значения декремента (затухания) при частоте 5 Гц можно выбрать либо параметр A = 1,0, либо B = 0,001 (рис. 3.2). В большинстве случаев у пользователя возникает необходимость определить затухание между двумя значениями частот f1 и f2 с относительно постоянным декrementом. Далее пользователю необходимо указать комбинацию значений параметров A и B, используя следующие формулы: (круговые или угловая частота ω = f•2•π)

\[A = 2 \cdot \omega_1 \cdot \omega_2 \cdot \frac{\xi_1 \cdot \omega_2 - \xi_2 \cdot \omega_1}{\omega_2^2 - \omega_1^2}. \] (3.11)
Если затухание в начале анализируемого временного интервала колебаний приравнено затуханию в конце этого интервала и после преобразования в стандартные частоты $\omega = f \cdot 2 \cdot \pi$ значения параметров A и B определяются по следующим формулам:

$$A = \xi \cdot 4\pi \cdot \frac{f_1 \cdot f_2}{f_1 + f_2},$$

$$B = \xi \cdot \frac{1}{\pi (f_1 + f_2)}.$$ \tag{3.13} \tag{3.14}

Пример: конструкционная сталь с болтовыми соединениями должна иметь среднее значение модального затухания 0,01 между 2 Гц и 10 Гц. Таким образом, мы имеем декремент $2 \cdot \pi \cdot \xi = 2 \cdot \pi \cdot 0,01 = 0,063$, т. е. пиковые значения амплитуд свободных колебаний должны уменьшиться на 6,3% в диапазоне от 2 Гц до 10 Гц.

Коэффициент $\frac{f_2 - f_1}{(f_2^2 - f_1^2)}$ имеет значение $\frac{10 - 2}{(10^2 - 2^2)} = 0,083$. В результате значения параметров A и B равны:

$$A = 0,01 \cdot 4\pi \cdot \frac{2 \cdot 10}{2 + 10} = 0,21.$$ \tag{3.15}

$$B = 0,01 \cdot \frac{1}{\pi (2 + 10)} = 0,000266.$$ \tag{3.14}

Для проверки полученных значений использует диаграмма или расчетные формулы:

<table>
<thead>
<tr>
<th></th>
<th>при 2 Гц</th>
<th>при 10 Гц</th>
<th>при 5 Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0525</td>
<td>0,0105</td>
<td>0,0210</td>
</tr>
<tr>
<td>B</td>
<td>0,0105</td>
<td>0,0525</td>
<td>0,0260</td>
</tr>
<tr>
<td>общее (d)</td>
<td>0,0630</td>
<td>0,0630</td>
<td>0,047</td>
</tr>
</tbody>
</table>

Т. е. на границах анализируемого временного интервала колебаний возникает желаемое затухание, но в рассматриваемом примере эти значения немного меньше желаемых. При частоте в 5,0 Гц общее демпфирование $d = 0,047$.

112
При прямом интегрировании возникает дополнительный эффект затухания значений колебаний. При этом имеется возможность выбора постоянной (константы) интегрирования \(\text{BET}, \text{DEL} \) и \(\text{THE} \). Значения этих постоянных, установленных по умолчанию (\(\text{BET} = 0,25; \text{DEL} = 0,50; \text{THE} = 1,00 \)), не дают никакого демпфирующего эффекта. То же самое справедливо и при модальном анализе, при котором также отсутствует демпфирующий эффект, поскольку полученные уравнения интегрированы максимально точно.

3.12 \textit{STEP} – Параметры поэтапной интеграции уравнений движения

См. также: \textit{ECHO, GRP, CTRL, EIGE, MODD, MASS, LC, CONT, HIST, EXTR}

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>Номер анализируемого временного интервала или разделительного интервала</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>(DT)</td>
<td>Значение временного интервала или общее значение времени</td>
<td>-</td>
<td>0,1</td>
</tr>
<tr>
<td>(INT)</td>
<td>Выходной интервал каждого (INT) шага</td>
<td>(-/LIT)</td>
<td>1</td>
</tr>
<tr>
<td>(A)</td>
<td>Пропорциональное демпфирование масс</td>
<td>1/сек</td>
<td>0</td>
</tr>
<tr>
<td>(B)</td>
<td>Пропорциональное демпфирование жесткостей</td>
<td>сек</td>
<td>0</td>
</tr>
<tr>
<td>(BET)</td>
<td>Параметры интеграционного метода</td>
<td>-</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>(DEL)</td>
<td>величина относительного времени для обеспечения равновесия</td>
<td>-</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(THE)</td>
<td></td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>(EIGB)</td>
<td>Дополнительная оценка частот изгибных колебаний</td>
<td>Гц</td>
<td>-</td>
</tr>
<tr>
<td>(EIGT)</td>
<td>Дополнительная оценка частот крутильных колебаний</td>
<td>Гц</td>
<td>-</td>
</tr>
<tr>
<td>Команда</td>
<td>Описание</td>
<td>Ед. изм.</td>
<td>По умолчанию</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>EIGS</td>
<td>Дополнительная оценка частот колебаний в грунтовом основании</td>
<td>Гц</td>
<td>-</td>
</tr>
<tr>
<td>DTF</td>
<td>Число шагов для SBFEM</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>STHE</td>
<td>Коэффициент экстраполяции для SBFEM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Команда *STEP* отвечает за выбор типа анализа, основной переменной в котором является параметр времени. Следует различать три случая применения команды *STEP*:

- **STEP N > 0**
 Анализ временного отрезка работы системы длительностью *N*•*DT* осуществляется прямым интегрированием (методы Ньюмарка и Уилсона) или аналитическим модальным интегрированием. Когда в систему вводится параметр *N* < 1, параметр *DT* распознается как суммарное значение времени, и характерное значение временного шага становится равным произведению *N*•*DT*.
 - *THE* = 0,0 явное интегрирование
 - *THE* = 1,0 интегрирование по методу Ньюмарка (по умолчанию постоянная величина)
 - *THE* ≥ 1,4 интегрирование по методу Уилсона (*BET* = 1/6, *DEL* = ½)
 - *THE* < 1,0 метод Гилбера-Хьюза-Тейлора (0,7 < *THE* < 1,0)

- **STEP 0** или значение не введено
 Статический анализ (без учета команды *EIGE*) или статистический анализ спектра, или установившихся возбуждений/колебаний. Если для параметра *INT* вводится *TIME* или *FREQ*, то при периодах колебаний или частот в пределах от 0 до *N*•*DT* запускается анализ отклика системы при заданной частоте функции нагрузки 2*π/T₀. Если вводится *STIM* или *SFRE*, то вместо ускорения нормируется значение нагрузки с постоянным
смещением. Если вводится \textit{VTIM} или \textit{VFRE}, нормирование значений соответствующих параметров основано на значении постоянной скорости.

- \textit{STEP N} < 0

Анализ переходного стационарного состояния системы с учетом сдвига фазы. Относится к периоду собственных колебаний, если параметр \textit{DT} не задан.

Подходящий размер временного шага зависит от частоты ожидаемой реакции системы. В случае применения прямого метода интегрирования уравнений движения элементов расчетной системы, периоды колебаний которых меньше примерно в 10 раз, временной шаг затухает, исходя из полученного решения. Если у пользователя возникают сомнения в правильности полученных значений, то сравнительный анализ должен выполняться в случае, когда шаг времени примерно равен одной четвертой от своего первоначального значения.

Следует принять во внимание тот факт, что стандартный метод Ньюмарка не включает числового затухания. В результате, небольшие погрешности в дальнейшем могут легко увеличиться. Эти ошибки могут повлиять на небольшое значение временного шага, выбранного совместно с согласованной матрицей масс. В том или ином случае постоянная интегрирования должна быть изменена, например:

- Параметр \textit{DEL} > 0,5 вводится для демпфирования системы по методу Ньюмарка
- Параметр \textit{THE} > 1,4 вводится для использования метода Ньюмарка
- Параметр \textit{THE} < 1,0 вводится для использования метода Гилбера-Хьюза-Тейлора

При использовании метода \textit{SBFEM} производительность системы сильно зависит от ограничения значений временных шагов. Без определения полного интеграла свертывания установлено, что трудозатраты по времени увеличиваются (во второй степени). Одним из возможных вариантов по уменьшению
трудозатрат, направленных на решение поставленной задачи, является оценка матриц, полученных в больших интервалах, и интерполяция между ними. Параметр DTF отвечает за ввод в систему необходимого количества временных шагов, которые необходимы для придания нужных свойств удаленным участкам расчетной системы. Существенным параметром системы является суммарное предельное свертывание на общее число матриц M. Этот параметр определяется частотой колебаний $EIGS = 1 / (DT \cdot DTF \cdot M)$.

3.13 LC – Случай загружения

См. также: $ECHO, GRP, CTRL, EIGE, MODD, MASS, STEP, CONT, HIST, EXTR$

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Номер загружения</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>$FACT$</td>
<td>Коэффициент для всех нагрузок загружения</td>
<td>-</td>
<td>1,0</td>
</tr>
<tr>
<td>DLX</td>
<td>Коэффициент собственного веса в направлении оси X</td>
<td>-</td>
<td>0,0</td>
</tr>
<tr>
<td>DLY</td>
<td>Коэффициент собственного веса в направлении оси Y</td>
<td>-</td>
<td>0,0</td>
</tr>
<tr>
<td>DLZ</td>
<td>Коэффициент собственного веса в направлении оси Z</td>
<td>-</td>
<td>0,0</td>
</tr>
<tr>
<td>$MODB$</td>
<td>Номер модального базового случая загружения</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$TITL$</td>
<td>Наименование загружения</td>
<td>Lit32</td>
<td>-</td>
</tr>
</tbody>
</table>

Все нагрузки, анализируемые в модуле $DYNA$, подразделяются на случаи загружения LC с соответствующим номером NO. Каждый случай загружения LC может быть введен в анализируемую расчетную систему при помощи модуля $SOFiLOAD$, в виде временных функций или спектра отклика/реакции. Выбор используемого случая загружения LC зависит от выбранного метода расчета.
1. Анализ переходных процессов

В результате анализа \((STEP~N > 0)\) все рассматриваемые случаи загружения и их функции устанавливается зависимость загружения от времени, а также время/момент его ввода в систему. Все функции действуют на расчетную систему одновременно с заданной нагрузкой. Модуль DYNA позволяет дополнительно задать условия контакта \(CONT\) для подвижной нагрузки.

2. Анализ статических или стационарных процессов

В случае стационарного анализа периодические нагрузки преобразуются в соответствующие отклики/реакции системы в соответствии с п.п. 2.5. В случае статического анализа случаи загружения анализируются отдельно.

Если спектры откликов уже определены, модуль DYNA при помощи двойной интерполяции позволяет определить все спектры реакций расчетной системы. Полученные спектры накладываются друг на друга при помощи статистического метода (команда \(CTRL\ STYP\)).

Для модального анализа общего случая применяется один и тот же вектор нагрузки при всех собственных формах колебаний. Однако, если при каждой собственной форме колебаний к системе необходимо приложить индивидуальную нагрузку, как в случае модального анализа ветрового воздействия, то параметр \(MODB\) позволяет указать номер \(LC\) при загружении, соответствующем первой собственной форме колебаний. Все последующие собственные формы будут привязаны к соответствующему номеру случая загружения.

В подобных случаях при спектральном загружении системы имеется характерная особенность:

Для оценки случаев загружения используется пользовательский параметр \(CRIT\).

Если данный параметр равен нулю, то оценка полученных спектров не производиться. Значение отклика системы равно 1,0. Если задано другое значение, то период собственных форм колебаний будет масштабироваться
относительно этого значения. Таким образом, для определения ветрового спектра это значение должно определяться по следующей формуле \(\frac{L_{turb}}{\nu_{mean}} \) или \(\frac{z}{\nu_{mean}} \).

3.14 CONT – Функции контактной и подвижной нагрузок

См. также: *ECHO, GRP, CTRL, EIGE, MODD, MASS, STEP, LC, HIST, EXTR*

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>Выбранное контактное значение (более не используется)</td>
<td>(LIT)</td>
<td>-</td>
</tr>
<tr>
<td>REF</td>
<td>Задание исходной оси под подвижную нагрузку</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>NR</td>
<td>Номер граничного элемента</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>Скорость движения</td>
<td>м/сек</td>
<td>-</td>
</tr>
<tr>
<td>YEX</td>
<td>Значение локального эксцентриситета</td>
<td>м</td>
<td>0,0</td>
</tr>
<tr>
<td>Tmin</td>
<td>Время начала движения</td>
<td>сек</td>
<td>0,0</td>
</tr>
<tr>
<td>LCUV</td>
<td>Загружение для динамической вертикальной нагрузки, возникающей от неровности поверхности</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LCUT</td>
<td>Загружение для динамической поперечной нагрузки, возникающей от неровности поверхности</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LCUR</td>
<td>Загружение для динамической нагрузки вращения, возникающей от неровности поверхности</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Динамический воздействие на сооружение/систему регулируется изменением местоположения точки контакта транспортного средства, в случае моделирования транспортных сооружений (например, мост), по времени.
Данная команда (*CONT*) позволяет определить момент/время приложения динамической нагрузки в точке контакта и механизм создания нагрузок на основе текущих деформаций анализируемой расчетной системы.

Ввиду того, что положение нагрузки зависит от времени, пользователю необходимо задать последовательность узлов, а затем указать значение времени контакта для каждого такого узла, т. к. точки контакта нагрузок с сооружением находятся именно в этих узлах. В большинстве случаев выбор значения параметра *NO* – номер или количество граничных/краевых элементов, определяется количеством узлов, введенных в систему в такой же последовательности. Помимо этого, имеется возможность явного задания граничных элементов при помощи команды *FUNC* (модуль *SOFiLOAD*), а также смещения и объединения нескольких таких элементов системы. Задание значения параметра скорости движения *V* позволяет генерировать все необходимые значения параметра времени исходя из преодоленного расстояния напрямую, либо можно ввести значение времени вдоль оси движения с учетом дополнительного временного параметра *TMIN* – дополнительный старт.

Если в случай загружения *LC* включена железнодорожная нагрузка – подвижная нагрузка, созданная в модуле *SOFiLOAD*, все нагрузки от подвижного железнодорожного состава (нагрузка от вагонов) будут следовать друг за другом на соответствующем расстоянии. Если в составе поезда также имеются конструктивные или визуальные объекты, созданные при помощи команды *TREX*, узлы этих объектов будут получать текущие координаты в виде смещений и абсолютных скоростей. Команда *CONT* используется для ввода только точечных нагрузок.

Три случая загружения *LCUV*, *LCUT* и *LCUR* позволяют вводить неровности поверхности или неровности в дорожном покрытии в качестве дополнительных смещений или поворотов при воздействии подвижной нагрузки с поверхностью в контактной точке. Функции, описывающие эти нагрузки, должны включать значения абсолютных перемещений, зависящих от времени движения опорной загруженной точки.
Значения перемещений в опорной точке контакта рассчитываются путем линейной интерполяцией значений между соседними узлами. Аналогичным образом распределяется нагрузка в точке контакта между соседними узлами. Внешние узловые нагрузки размещаются в точке контакта только тогда, когда номер узла имеет значение 0.

Для задания нагрузок, движущихся по мосту, в соответствии с DIN FB 101/EC1, используется следующий ввод:

```
PROG SOFILOAD
HEAD Задание геометрии по умолчанию
ECHO FULL
GAX 'AXIS' 0.0 X 0.0 0.0 R 150 NZ +1.0
  'AXIS' 3.0 X 30.0 0.0 R 150
LC 191 ; TRAIN RFAT 4 p4 0.0 ; frex 191 901 900 11 1
END

PROG DYNA
GRP 1,2,3 ; GRP 901 FAKS 0.0
CTRL ELF 1001 7
LET #1 30.0 $ СКОРОСТЬ в м/с $
STEP 0.01 300.0/ #1 $ Общее время движения $
LC 191 $ Железнодорожная нагрузка $
CONT REF AXIS NO 10 #1 2.0 $ Автоматическое значение времени в узлах граничных элементов $$
```

Другие варианты ввода нагрузок можно рассмотреть в файлах с примерами dyna9_travelling_loads.dat и loadtrains.dat (модуль SOFiLOAD).
3.15 *HIST* – Результаты анализа соответствующего временного участка

См. также: *ECHO, GRP, CTRL, EIGE, MODD, MASS, STEP, LC, CONT, EXTR*

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>Результирующее значение (см. таблицу)</td>
<td>LIT</td>
<td>S</td>
</tr>
<tr>
<td>FROM</td>
<td>Начальный номер узла или элемента</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>TO</td>
<td>Конечный номер узла или элемента</td>
<td>-</td>
<td>FROM</td>
</tr>
<tr>
<td>INC</td>
<td>Исключение или дополнение элементов системы</td>
<td>/LIT</td>
<td>1</td>
</tr>
<tr>
<td>RESU</td>
<td>Запрос на вывод результатов</td>
<td>LIT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Вывод численных значений результатов</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIN Вывод численных значений результатов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCST</td>
<td>Номер «случая», сохраненный в базе данных программы</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>0 не сохраняется в базу данных</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XREF</td>
<td>Сечение или опорная точка для определения в ней суммы упругих усилий</td>
<td>м</td>
<td>0</td>
</tr>
<tr>
<td>YREF</td>
<td>определения в ней суммы упругих усилий</td>
<td>м</td>
<td>0</td>
</tr>
<tr>
<td>ZREF</td>
<td>по направлениям или dP/P ширины</td>
<td>м</td>
<td>0</td>
</tr>
<tr>
<td>DUMP</td>
<td>Название файла, содержащего значения результатов анализа</td>
<td>Lit48</td>
<td>-</td>
</tr>
</tbody>
</table>

Команда *HIST* отвечает за отображение динамики изменения определенных параметров расчетной системы. Значения этих параметров сохраняются в базе
данный для последующего их отображения в отчете при помощи модуля DYNR. Также имеется возможность прямого вывода этих значений или вывода в виде отдельного файла, в котором сохранены эти значения. В одном вводе команды HIST может содержаться до 32 параметров системы.

Полученные в процессе расчета максимальные и минимальные значения рассматриваемых параметров, будут отображены пользователю в любом случае и независимо от настроек команды HIST.

Таблица 3.21 – Используемые значения (параметр TYPE)

<table>
<thead>
<tr>
<th>Используемые значения - TYPE</th>
<th>Значение параметра</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>UX, UY, UZ</td>
</tr>
<tr>
<td>U-X U-Y U-Z</td>
<td>Перемещения</td>
</tr>
<tr>
<td>U-RX U-RY U-RZ</td>
<td>Вращения</td>
</tr>
<tr>
<td>V</td>
<td>VX, VY, VZ</td>
</tr>
<tr>
<td>V-X V-Y V-Z</td>
<td>Скорости</td>
</tr>
<tr>
<td>V-RX V-RY V-RZ</td>
<td>Угловая скорость</td>
</tr>
<tr>
<td>A</td>
<td>AX, AY, AZ</td>
</tr>
<tr>
<td>AX AY AZ</td>
<td>Ускорения</td>
</tr>
<tr>
<td>ARX ARY ARZ</td>
<td>Угловые ускорения</td>
</tr>
<tr>
<td>P PT M</td>
<td>Усилия и моменты в пружине</td>
</tr>
<tr>
<td>PX PY PZ</td>
<td>Общее усилие в пружине в глобальных направлениях</td>
</tr>
<tr>
<td>PT/P DP/P</td>
<td>Момент в пружине</td>
</tr>
<tr>
<td>SP</td>
<td>Сумма всех компонентов усилия в пружине</td>
</tr>
<tr>
<td>SPX SPY SPZ</td>
<td>Сумма компонентов усилия в пружине</td>
</tr>
<tr>
<td>SPRX SPRY SPRZ</td>
<td>Сумма компонентов момента в пружине</td>
</tr>
<tr>
<td>TRUS</td>
<td>Осевое усилие в элементе фермы/шпренгеля</td>
</tr>
<tr>
<td>CABL</td>
<td>Осевое усилие в нити/кабеле</td>
</tr>
<tr>
<td>BEAM</td>
<td>Усилия во всех стержневых элементах системы</td>
</tr>
<tr>
<td>N VY VZ</td>
<td>Продольные и сдвиговые усилия в стержне</td>
</tr>
<tr>
<td>Используемые значения - TYPE</td>
<td>Значение параметра</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>MT MY MZ</td>
<td>Крутящий и изгибающий моменты в балке</td>
</tr>
<tr>
<td>SIG TAU SIGV</td>
<td>Напряжения в точках сечения элемента</td>
</tr>
<tr>
<td>QUAD</td>
<td>Все усилия в оболочке</td>
</tr>
<tr>
<td>MXX MYY MXY</td>
<td>Моменты в оболочке</td>
</tr>
<tr>
<td>VXX VYY</td>
<td>Усилия сдвига в оболочке</td>
</tr>
<tr>
<td>NXX NYY NXY</td>
<td>Мембранные силы в оболочке</td>
</tr>
<tr>
<td>BRIC</td>
<td>Все напряжения в сплошных средах</td>
</tr>
<tr>
<td>TXX TYY TZZ</td>
<td>Напряжения в сплошных 3D средах</td>
</tr>
<tr>
<td>TXY TXZ TYZ</td>
<td>Напряжения сдвига в сплошных 3D средах (доступны только при EIGE REST из модуля ASE). Расчет динамической жесткости с учетом ее действительной и мнимой частями при диапазоне частот</td>
</tr>
<tr>
<td>DSX DSY DSZ</td>
<td>Поступательные степени свободы</td>
</tr>
<tr>
<td>DSRX DSRY DSRZ</td>
<td>Вращательные степени свободы</td>
</tr>
</tbody>
</table>

Команда XREF используется для задания/определения сечения стержня, в котором оцениваются результаты, полученные в процессе анализа. Отрицательное значение этого параметра определяется из отношения площади сечения к полной длине стержня, при этом значение -1,0 выбирает конец стержня.

Для оценки напряжений в пределах заданного сечения, используется идентификатор INC точек напряжений (SPT).

Соотношение упругих усилий могут быть полезны для оценки взаимодействия между элементами транспортного средства (оценка работы подвески). Эти соотношения определяются следующим образом:

\[
PT/P \quad \text{Отношение результирующего поперечного усилия } PT \text{ к основному усилию } P \text{ в пружине}
\]

\[
DP/P \quad \text{Отношение разности главных усилий в двух пружинах к среднему значению упругих усилий одних и тех же пружинных элементов:}
\]
\[\frac{\Delta P}{P} = \frac{P_1 - P_2}{P_1 + P_2} \] \hspace{1cm} (3.17)

\[\text{INC} = 0 \text{ только между FROM и TO} \]

\[\text{INC} > 0 \text{ изменяется в зависимости от преднапряженного усилия или:} \]

Все пружинные элементы соответствуют вращательной пружине с теми же узлами. Далее значение усилия \(\Delta P \) будет установлено исходя из значения момента и расстояния в плане, полученных из значений параметров \(XREF \) в \(ZREF \).

3.16 EXTR – Оценка максимальных значений внутренних усилий и моментов

См. также: \(ECHO, GRP, CTRL, EIGE, MODD, MASS, STEP, LC, CONT, HIST \)

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TYPE)</td>
<td>Конструктивные параметры</td>
<td>(LIT)</td>
<td>!</td>
</tr>
<tr>
<td>(MAX)</td>
<td>Максимальный номер загружения</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(MIN)</td>
<td>Минимальный номер загружения</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(STYP)</td>
<td>Тип статической/стационарной суперпозиции</td>
<td>(LIT)</td>
<td>(CQC)</td>
</tr>
</tbody>
</table>

\(ADD \) Сумма значений
\(SUM \) Сумма абсолютных значений
\(SRSS \) Квадратный корень из суммы квадратов значений
<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQC Полно-квадратичная комбинация (правило суммирования, основанное на предположении, что случайный процесс сейсмических колебаний представляет собой «белый шум» бесконечной длительности) SRS1 Согласованный/унифицированный метод SRSS CQC1 Согласованный/унифицированный метод CQC … SRS9 Согласованный/унифицированный метод SRSS CQC9 Согласованный/унифицированный метод CQC Параметр, установленный по умолчанию (CQC), может быть изменен при помощи команды CTRL STYP V2. ACT Наименование воздействия для отображения их в результатах См. ниже</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Для ввода команды *TYPE* возможно использование следующих параметров. В первой вводной строке рассматриваемой команды активируются все возможные
максимальные значения внутренних усилий и моментов. В данном случае никаких промежуточных значений внутренних усилий не рассчитываются.

Таблица 3.23 – Расчетные параметры в узлах

<table>
<thead>
<tr>
<th>Параметры команды TYPE</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Перемещение</td>
</tr>
<tr>
<td>V</td>
<td>Скорость</td>
</tr>
<tr>
<td>A</td>
<td>Ускорение</td>
</tr>
</tbody>
</table>

Таблица 3.24 – Расчетные параметры стержней (BEAM)

<table>
<thead>
<tr>
<th>Параметры команды TYPE</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BEAM$</td>
<td>Максимальные значения параметров стержневых элементов (не применяется при суперпозиции)</td>
</tr>
<tr>
<td>N</td>
<td>Продольная/осевая сила</td>
</tr>
<tr>
<td>VY</td>
<td>Поперечная сила V_y</td>
</tr>
<tr>
<td>VZ</td>
<td>Поперечная сила V_z</td>
</tr>
<tr>
<td>MT</td>
<td>Крутящий момент</td>
</tr>
<tr>
<td>MY</td>
<td>Изгибающий момент M_y</td>
</tr>
<tr>
<td>MZ</td>
<td>Изгибающий момент M_z</td>
</tr>
<tr>
<td>MB</td>
<td>Момент коробления/депланации</td>
</tr>
<tr>
<td>$MT2$</td>
<td>Второй крутящий момент</td>
</tr>
</tbody>
</table>
Таблица 3.25 – Расчетные параметры элементов фермы (*TRUS*)

<table>
<thead>
<tr>
<th>Параметры команды TYPE</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUS</td>
<td>Усилия в элементах фермы</td>
</tr>
</tbody>
</table>

Таблица 3.26 – Расчетные параметры нитей/кабельных элементов (*CABL*)

<table>
<thead>
<tr>
<th>Параметры команды TYPE</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABL</td>
<td>Усилия в нитях/кабельных элементах</td>
</tr>
</tbody>
</table>

Таблица 3.27 – Расчетные параметры пружинных элементов (*SPRI*)

<table>
<thead>
<tr>
<th>Параметры команды TYPE</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRI</td>
<td>Максимальные значения параметров в пружинных элементах (не применяется при суперпозиции)</td>
</tr>
<tr>
<td>P</td>
<td>Значение усилия, действующее в главном направлении пружинного элемента</td>
</tr>
<tr>
<td>PT</td>
<td>Результирующее усилие в пружинном элементе, действующее в поперечном направлении: $PT = \sqrt{PTX^2 +PTY^2 +PTZ^2}$</td>
</tr>
<tr>
<td>PTX</td>
<td>Компонент усилия, действующего в пружинном элементе в направлении глобальной оси X</td>
</tr>
<tr>
<td>PTY</td>
<td>Компонент усилия, действующего в пружинном элементе в направлении глобальной оси Y</td>
</tr>
<tr>
<td>PTZ</td>
<td>Компонент усилия, действующего в пружинном элементе в направлении глобальной оси Z</td>
</tr>
<tr>
<td>M</td>
<td>Момент, действующий в пружинном элементе</td>
</tr>
<tr>
<td>Параметры команды TYPE</td>
<td>Описание</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SP</td>
<td>Сумма усилий, действующих в пружинном элементе</td>
</tr>
<tr>
<td>SPX</td>
<td>Сумма компонентов усилия, действующих в направлении оси X элемента</td>
</tr>
<tr>
<td>SPY</td>
<td>Сумма компонентов усилия, действующих в направлении оси Y элемента</td>
</tr>
<tr>
<td>SPZ</td>
<td>Сумма компонентов усилия, действующих в направлении оси Z элемента</td>
</tr>
<tr>
<td>$SPRX$</td>
<td>Сумма вращающих усилий, действующих в пружинном элементе вокруг оси X</td>
</tr>
<tr>
<td>$SPRY$</td>
<td>Сумма вращающих усилий, действующих в пружинном элементе вокруг оси Y</td>
</tr>
<tr>
<td>$SPRZ$</td>
<td>Сумма вращающих усилий, действующих в пружинном элементе вокруг оси Z</td>
</tr>
</tbody>
</table>

Таблица 3.28– Расчетные параметры плитных/оболочечных элементов ($QUAD$)

<table>
<thead>
<tr>
<th>Параметры команды TYPE</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>$QUAD$</td>
<td>Максимальные значения параметров в плоских $QUAD$ элементах (не применяется при суперпозиции)</td>
</tr>
<tr>
<td>MXX</td>
<td>Изгибающий момент m-xx</td>
</tr>
<tr>
<td>MYY</td>
<td>Изгибающий момент m-yy</td>
</tr>
<tr>
<td>MXY</td>
<td>Крутящий момент m-xy</td>
</tr>
<tr>
<td>VXX</td>
<td>Поперечная сила v-x</td>
</tr>
<tr>
<td>VYY</td>
<td>Поперечная сила v-y</td>
</tr>
<tr>
<td>Параметры команды TYPE</td>
<td>Описание</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>NXX</td>
<td>Мембранные усилие n-xx</td>
</tr>
<tr>
<td>NYY</td>
<td>Мембранные усилие n-yy</td>
</tr>
<tr>
<td>NXY</td>
<td>Сдвигающее усилие n-hx</td>
</tr>
<tr>
<td>NZZ</td>
<td>Мембранные усилие n-zz</td>
</tr>
</tbody>
</table>

Таблица 3.29 – Расчетные параметры объемных элементов (BRIC)

<table>
<thead>
<tr>
<th>Параметры команды TYPE</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRIC</td>
<td>Максимальные значения параметров в BRIC элементах (не применяется при суперпозиции)</td>
</tr>
<tr>
<td>TXX</td>
<td>Напряжения, действующие в направлении глобальной оси X</td>
</tr>
<tr>
<td>TYY</td>
<td>Напряжения, действующие в направлении глобальной оси Y</td>
</tr>
<tr>
<td>TZZ</td>
<td>Напряжения, действующие в направлении глобальной оси Z</td>
</tr>
<tr>
<td>TXY</td>
<td>Напряжения сдвига, действующие в глобальной плоскости XY</td>
</tr>
<tr>
<td>TXZ</td>
<td>Напряжения сдвига, действующие в глобальной плоскости XZ</td>
</tr>
<tr>
<td>TYZ</td>
<td>Напряжения сдвига, действующие в глобальной плоскости YZ</td>
</tr>
</tbody>
</table>

Таблица 3.30 – Расчетные параметры систем элементов (RSET)

<table>
<thead>
<tr>
<th>Параметры команды TYPE</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRIC</td>
<td>Максимальные значения параметров в RSET элементов (не применяется при суперпозиции)</td>
</tr>
<tr>
<td>RS1</td>
<td>первый ввод каждого RSET элемента</td>
</tr>
<tr>
<td>Параметры команды TYPE</td>
<td>Описание</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RS2</td>
<td>второй ввод каждого RSET элемента…</td>
</tr>
<tr>
<td>RS31</td>
<td>31-ый ввод каждого RSET элемента</td>
</tr>
</tbody>
</table>

Максимальные значения расчетных параметров сохраняются в базе данных при условии, если введены параметры MAX и/или MIN команды EXTR. По умолчанию, в систему вводятся только максимальные значения параметры узлов (U, V, A). Для рассмотрения или вывода всех результирующих параметров узлов расчетной системы и их значений необходимо использовать команды ECHO DISP, VELO или ACCE.

Особые примечания при возникновении в расчетной системе экстремальных значений спектра отклика/реакции

Максимальные значения усилий становятся положительными при использовании методов SUM, SRSS и CQC. Отдельные версии методов SRS1 и CQC1 позволяют пересчитать результаты, полученные при использовании оригинальных методов, в соответствии со знаком первой собственной формы колебаний. (От второй (SRS2) по девятую аналоговые собственные формы колебаний (CQC9)) В любом случае, независимо от знака результатов, полученных в ходе расчета, они должны быть использованы при решении других задач.

Все максимальные значения параметров системы будут рассчитываться для каждого усилия независимо. Все экстремальные значения будут собраны и сохранены в одной записи. Реальное значение отклика/реакции системы может быть получено путем комбинации положительных или отрицательных индивидуальных значений. Реализация подобного может быть затруднительна при проектировании сооружения, и это определенно не подходит для его демонстрации при помощи модуля ANIMATOR.
С другой стороны, при наложении одиночного внутреннего усилия, соответствующие внутренние усилия системы формируются таким же образом при помощи линейной комбинации. Подобный алгоритм может быть использован для всех внутренних усилий и моментов, возникающих в расчетной системе при ее нагружении. Рассматриваемый алгоритм решения был разработан только для ПК SOFiSTiK и, поэтому вряд ли можно найти подобный аналог в других программных комплексах.

Метод \textit{SUM} определяет верхний предел значения, а \textit{SRSS} может преувеличить или преуменьшить вероятное значение рассматриваемого параметра. Метод \textit{CQC} обычно дает наиболее приемлемые/вероятные результаты.

Ускорения, приложенные к грунтовому основанию, также включаются в состав результирующего ускорения в узле. Однако, значения перемещений и скоростей движения всегда связаны со свободными перемещениями грунтового поля/основания.

Расчетные параметры \textit{SP} и \textit{SPX}, \textit{SPY}, \textit{SPZ} позволяют определить общую сумму всех компонентов усилий, возникающих в опорных пружинных элементах системы и действующие в направлениях глобальной системы координат. Вывод результатов расчета осуществляется по группам. Расчетные параметры \textit{PTX}, \textit{PTY}, \textit{PTZ} имеют только тангенциальные компоненты.

\textbf{Наименования воздействий}

Параметр \textit{ACT} позволяет приписать конкретному воздействию определенные результаты, полученные в ходе расчета и анализа системы. В дальнейшем это позволит применить метод суперпозиции. Все воздействия, представленные в модуле \textit{SOFiLOAD}, могут быть введены в систему при помощи параметра \textit{ACT}.

131
3.17 *ECHO* – Вывод результатов расчета

См. также: *EXTR, GRP, CTRL, EIGE, MODD, MASS, STEP, LC, CONT, HIST*

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
<th>Ед. изм.</th>
<th>По умолчанию</th>
</tr>
</thead>
</table>
| **OPT** | Доступные следующие параметры:
NODE Значения расчетных параметров узлов
SECT Значения расчетных параметров сечения элемента
ELEM Элементы системы
MASS Массы в узлах системы
EIGE Частота собственных колебаний
LOAD Нагрузки
DISP Перемещения
FORC Внутренние усилия и моменты
VELO Скорости
ACCE Ускорения
STAT Предупреждение при проверке сходимости

FULL Отображаются значения всех вышеперечисленных параметров | **LIT** | **FULL** |
| **VAL** | Объем выходных данных:
OFF Вывод всех параметров (вывод отчета) полностью отключен
NO Без вывода отчета
YES Средний по объему отчет
FULL Обширный объем отчета
EXTR Самый полный отчет | **LIT** | **FULL** |
Команда *ECHO* должно повторяться в каждой строке кода, чтобы избежать путаницы с похожими по названию командами (например, с командой *CROS*).

По умолчанию, для параметров *NODE*, *CROSS* и *ELEMENT* установлена команда вывода отчета *NO*. Для всех остальных параметров введена команда *YES*.

Для проверки сходимости предупреждение №. 10918 (Без проверки сходимости результатов, полученных при помощи итерационного решателя уравнений вектора нагрузки) можно отключить при помощи команды *ECHO STAT NO*.

Некоторые из результирующих таблиц представлены ниже.

Таблица 3.32 – Собственные значения (*ECHO EIGE*)

<table>
<thead>
<tr>
<th>No.</th>
<th>LC</th>
<th>λ</th>
<th>error</th>
<th>ω</th>
<th>f</th>
<th>T</th>
<th>ξ</th>
<th>X/o/o</th>
<th>Y/o/o</th>
<th>Z/o/o</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9001</td>
<td>8.2106E+00</td>
<td>0.00E+00</td>
<td>2.865</td>
<td>0.456</td>
<td>2.193</td>
<td>0.000</td>
<td>0.000</td>
<td>25.9</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>9002</td>
<td>1.2585E+01</td>
<td>0.00E+00</td>
<td>3.548</td>
<td>1.565</td>
<td>1.771</td>
<td>0.000</td>
<td>26.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>9003</td>
<td>5.3080E+01</td>
<td>0.00E+00</td>
<td>7.286</td>
<td>1.160</td>
<td>0.862</td>
<td>0.000</td>
<td>22.0</td>
<td>4.30</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>9004</td>
<td>5.3080E+01</td>
<td>0.00E+00</td>
<td>7.286</td>
<td>1.160</td>
<td>0.862</td>
<td>0.000</td>
<td>43.0</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>9005</td>
<td>2.2238E+02</td>
<td>1.31E-09</td>
<td>14.912</td>
<td>2.373</td>
<td>0.421</td>
<td>0.000</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>9006</td>
<td>2.2238E+02</td>
<td>9.81E-09</td>
<td>14.912</td>
<td>2.373</td>
<td>0.421</td>
<td>0.000</td>
<td>0.0</td>
<td>3.4</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>9007</td>
<td>2.8310E+02</td>
<td>3.40E-12</td>
<td>16.823</td>
<td>2.677</td>
<td>0.373</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>35.0</td>
</tr>
<tr>
<td>8</td>
<td>9008</td>
<td>4.3733E0+02</td>
<td>1.11E-07</td>
<td>20.913</td>
<td>3.328</td>
<td>0.300</td>
<td>0.000</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>6.1899E+02</td>
<td>2.05E-04</td>
<td>24.880</td>
<td>3.960</td>
<td>0.253</td>
<td>0.000</td>
<td>0.0</td>
<td>75.3</td>
<td>76.3</td>
<td>35.0</td>
</tr>
<tr>
<td>10</td>
<td>7.6523E+02</td>
<td>2.00E-07</td>
<td>27.663</td>
<td>4.403</td>
<td>0.227</td>
<td>0.000</td>
<td>0.0</td>
<td>75.3</td>
<td>76.3</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Таблица 3.33 – Коэффициенты вклада модальной нагрузки в зависимости от действия функции нагрузки (*ECHO LOAD*)

<table>
<thead>
<tr>
<th>LC</th>
<th>Mode</th>
<th>Φ·p</th>
<th>Φ2·p</th>
<th>Φ·p</th>
<th>Φ2·p</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>1</td>
<td>1.323E-14</td>
<td>-7.794E-30</td>
<td>4</td>
<td>1.359E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.046E+01</td>
<td>-4.729E+00</td>
<td>5</td>
<td>3.718E+00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-4.695E-01</td>
<td>-5.125E-03</td>
<td>6</td>
<td>-4.786E-04</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>3.081E+02</td>
<td>-1.391E+01</td>
<td>2</td>
<td>3.049E+02</td>
</tr>
</tbody>
</table>

Таблица 3.32 – Собственные значения (*ECHO EIGE*)

Таблица 3.33 – Коэффициенты вклада модальной нагрузки в зависимости от действия функции нагрузки (*ECHO LOAD*)
Таблица 3.34 – Сумма усилий (Сдвиг основания) *(ECHO RESP)*

<table>
<thead>
<tr>
<th>LC</th>
<th>Масса</th>
<th>Mode</th>
<th>X[kN]</th>
<th>Y[kN]</th>
<th>Z[kN]</th>
<th>X[kNm]</th>
<th>Y[kNm]</th>
<th>Z[kNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>base1</td>
<td>SRSS 2</td>
<td>49.5</td>
<td>2.3</td>
<td>0.0</td>
<td>17.49</td>
<td>367.36</td>
<td>0.00</td>
</tr>
<tr>
<td>902</td>
<td>base1</td>
<td>SRSS 2</td>
<td>2.3</td>
<td>48.6</td>
<td>0.0</td>
<td>363.02</td>
<td>17.49</td>
<td>44.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRSS 3</td>
<td>49.6</td>
<td>48.7</td>
<td>0.0</td>
<td>363.44</td>
<td>367.78</td>
<td>44.13</td>
</tr>
</tbody>
</table>

1. LC, load case
2. Масса, mass
3. Mode, Mode eigenmode number
4. SRSS, Summation of forces (Base-Shear)

Таблица 3.35 – Сумма усилий (Сдвиг основания) *(ECHO RESP FULL)*

<table>
<thead>
<tr>
<th>LC</th>
<th>Масса</th>
<th>Mode</th>
<th>X[kN]</th>
<th>Y[kN]</th>
<th>Z[kN]</th>
<th>X[kNm]</th>
<th>Y[kNm]</th>
<th>Z[kNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>base1</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-13.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00</td>
<td>81.65</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-0.1</td>
<td>1.6</td>
<td>0.0</td>
<td>12.37</td>
<td>0.43</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-47.6</td>
<td>-1.6</td>
<td>0.0</td>
<td>-12.37</td>
<td>358.17</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRSS 3</td>
<td>49.5</td>
<td>2.3</td>
<td>0.0</td>
<td>17.49</td>
<td>367.36</td>
<td>0.00</td>
</tr>
<tr>
<td>902</td>
<td>base1</td>
<td>1</td>
<td>0.0</td>
<td>-9.8</td>
<td>0.0</td>
<td>-59.16</td>
<td>0.00</td>
<td>44.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.6</td>
<td>-47.6</td>
<td>0.0</td>
<td>-358.17</td>
<td>-12.37</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-1.6</td>
<td>-0.1</td>
<td>0.0</td>
<td>-0.43</td>
<td>12.37</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRSS 3</td>
<td>49.6</td>
<td>48.7</td>
<td>0.0</td>
<td>363.02</td>
<td>17.49</td>
<td>44.13</td>
</tr>
</tbody>
</table>

1. Vb is computed for the entire structure ("base" of the structure).
2. Total Vb and Mb obtained by the given modal superposition rule.
3. Superposed total Vb and Mb obtained by the given response spectra superposition rule.

Таблица 3.36 – Модальные отклики системы – RSA

<table>
<thead>
<tr>
<th>LC</th>
<th>Mode</th>
<th>qₘₐₓ</th>
<th>f[Hz]</th>
<th>ξ₀/o</th>
<th>T[sec]</th>
<th>S(ξ,T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>1</td>
<td>6.701E-16</td>
<td>0.456</td>
<td>5.000</td>
<td>2.193</td>
<td>0.416</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-4.691E-01</td>
<td>0.565</td>
<td>5.000</td>
<td>1.771</td>
<td>0.565</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.026E-02</td>
<td>1.160</td>
<td>5.000</td>
<td>0.862</td>
<td>1.160</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.969E-01</td>
<td>1.160</td>
<td>5.000</td>
<td>0.862</td>
<td>1.160</td>
</tr>
<tr>
<td>902</td>
<td>1</td>
<td>-5.218E-01</td>
<td>0.456</td>
<td>5.000</td>
<td>2.193</td>
<td>0.416</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-8.588E-17</td>
<td>0.565</td>
<td>5.000</td>
<td>1.771</td>
<td>0.565</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.969E-01</td>
<td>1.160</td>
<td>5.000</td>
<td>0.862</td>
<td>1.160</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.026E-02</td>
<td>1.160</td>
<td>5.000</td>
<td>0.862</td>
<td>1.160</td>
</tr>
</tbody>
</table>

Response of periodic loading is exact including the phases. Contributions of all functions will be added as sum of squares.

<table>
<thead>
<tr>
<th>LC</th>
<th>Mode</th>
<th>qₘₐₓ</th>
<th>f[Hz]</th>
<th>ξ₀/o</th>
<th>T[sec]</th>
<th>S(ξ,T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>902</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. LC, load case
2. Масса, mass
3. Mode, Mode eigenmode number
4. qₘₓ, maximal modal coordinate response per loading function
5. f[Hz], eigenfrequency
6. ξ₀/o, modal damping ratio
7. T[sec], eigenperiod
8. S(ξ,T), pseudo-acceleration spectral response normalized w.r.t. ground acceleration
Таблица 3.37 - Модальные отклики системы – *MTHA*

<table>
<thead>
<tr>
<th>Mode</th>
<th>$q(t),_{max}$</th>
<th>Mode</th>
<th>$q(t),_{max}$</th>
<th>Mode</th>
<th>$q(t),_{max}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.543E-18</td>
<td>2</td>
<td>2.492E-17</td>
<td>3</td>
<td>7.744E-03</td>
</tr>
<tr>
<td>4</td>
<td>2.242E-01</td>
<td>5</td>
<td>1.500E-19</td>
<td>6</td>
<td>5.326E-18</td>
</tr>
<tr>
<td>7</td>
<td>5.099E-20</td>
<td>8</td>
<td>1.301E-19</td>
<td>9</td>
<td>1.872E-18</td>
</tr>
<tr>
<td>10</td>
<td>5.170E-18</td>
<td>11</td>
<td>8.089E-19</td>
<td>12</td>
<td>1.694E-18</td>
</tr>
<tr>
<td>13</td>
<td>8.212E-04</td>
<td>14</td>
<td>1.965E-03</td>
<td>15</td>
<td>3.590E-18</td>
</tr>
<tr>
<td>16</td>
<td>2.970E-18</td>
<td>17</td>
<td>6.437E-19</td>
<td>18</td>
<td>1.057E-04</td>
</tr>
<tr>
<td>19</td>
<td>2.718E-04</td>
<td>20</td>
<td>1.382E-16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mode - eigenmode number, q(t),_{max} - maximal modal coordinate response.
4 ВЫВОД РЕЗУЛЬТАТОВ АНАЛИЗА СИСТЕМЫ

4.1 Узлы

Расчетные параметры узлов выводятся из системы при помощи только команды *ECHO NODE YES*. Таблица результатов включает в себя значения координат и связи. При помощи команды *ECHO NODE FULL* также могут быть отображены номера уравнений степеней свободы.

4.2 Поперечные сечения

Таблица расчетных параметров поперечных сечений появляется после ввода в систему команды *ECHO SECT*. В результирующую таблицу включены следующее параметры сечений:

Параметры поперечного сечения

- **A**: Площадь поперечного сечения
- **Ay**: Сдвиговая площадь поперечного сечения, в направлении оси Y
- **Az**: Сдвиговая площадь поперечного сечения, в направлении оси Z
- **It**: Крутящий момент инерции
- **Iy**: Момент инерции относительно главной оси (оси Y)
- **Iz**: Момент инерции относительно вторичной оси (оси Z)
- **E**: Модуль упругости
- **G**: Модуль сдвига
- **Da**: Фактор внешнего затухания (пропорциональный массе)
- **Di**: Фактор внутреннего затухания (пропорциональный жесткости)
- **Rho**: Плотность
4.3 Общие параметры

В начале динамического анализа появляется таблица «CONTROL INFORMATIONS» с общими параметрами системы. В этой таблице представлены следующие значения:

- Количество неизвестных и уравнений в системе
- Количество используемых собственных значений
- Количество и размер временного шага
- Демпфирование Рэлея путем прямого интегрирования системы
- Параметры интеграционного метода

4.4 Элементы расчетной системы

Таблицы с параметрами балочных, пружинных или элементами ферм, а также сосредоточенных масс и демпфирующих элементов отображаются при вводе команды ECHO ELEM. В эти таблицы включены параметры узлов элемента, значения длин, жесткости пружин, направления локальных осей и компоненты масс.

В первой строке таблицы общих масс приведено значение суммы масс в узлах системы, т. е. вращательные массы - это только инерции вращения узлов. Несмотря на это, следующие строки таблиц содержат значения ординаты общего центра тяжести и общий момент инерции всех поступательных масс, проанализированных в этом центре в формате матрицы 3х3.

4.5 Собственные частоты колебания системы

После первого вычисления собственных частот колебаний программа выводит ошибку, связанную с собственными значениями системы, вместе с требуемым для ее устранения количеством итераций. Вывод всех остальных результатов, полученных после первого расчета собственных частот, управляется при помощи команды ECHO EIGE:
При равноускоренном движении грунтового основания в направлении всех трех координатных осей можно оценить модальные составляющие колебаний (столбцы в таблице: f_{XX}, f_{YY} и f_{ZZ}). Процентное выражение полученных значений от общей массы позволяет создать критерий для ввода в систему достаточного количества собственных значений.

Собственные векторы нормируются относительно масс (ур-ние 2.20 теоретических принципов). Значения внутренних усилий и моментов в элементе при определенных собственных векторах обычно характеризуют тип напряжения в элементе. Абсолютное значение расчетного параметра зависит от нормализации и может принимать значительно большее значение, чем на самом деле.

4.6 Случаи загружения, функции и нагрузки

Таблица функций и нагрузки всегда вводятся перед заданием самой функции, после чего в уже созданный в системе случай загружения LC включают саму нагрузку.

Обобщенные нагрузки особых форм колебаний и сумма квадратов их значений выводятся в случае ввода в систему модальных нагрузок.

Существует еще один способ вывода, который используется только при интеграции квадратов собственных значений элементов сооружения и через специальное разделение нагрузки.
4.7 Перемещения

Перемещения, возникающие при действии отдельных случаев загружения, выводятся при помощи статического анализа.

Для динамического анализа максимальных значений перемещений всем анализируемым узлам можно придать значение скорости и ускорения. В результате этого к каждому узлу в отчетной таблице будут прикреплены две строки с максимальным и минимальным значением перемещения, а также соответствующее значение времени, если был проведен анализ изменений системы во времени. В случае стохастического или стационарного возбуждения системы экстремальные значения ее параметров рассчитываются при помощи статистических методов или путем анализа одного периода, установившихся в системе колебаний.

4.8 Внутренние усилия и моменты

Внутренние усилия и моменты, возникающие при действии отдельных случаев загружения, выводятся при помощи статического анализа.

В процессе расчета определяются максимальные значения всех внутренних усилий и моментов, указанных в составе команды EXTR вместе с другими соответствующими расчетными параметрами. В процессе всего расчета используется одно значение времени. В случае стохастического или стационарного возбуждения экстремальные значения вычисляются статистическими методами.

4.9 Изменения системы по времени

Все изменения конструктивных параметров по времени находятся и управляются при помощи команды HIST. Все изменения определенного параметра могут быть представлены в форме таблицы, графика или кривой. Все
данные об изменении хранятся в базе данных программы и используются для дальнейшей их обработки в модуле DYNR. Все изменения расчетных параметров узлов или элементов системы, каждому из которых соответствует запись команды HIST, выводятся на общем графике (Х – время; Y – расчетный параметр). Каждому отдельному графику пользователь может присвоить свой масштаб отображения результатов. Все кривые на графике могут быть отмечены цифрами или буквами.
5 ПРИМЕРЫ РЕШАЕМЫХ ЗАДАЧ

Примеры решения задач с использованием модуля DYNA находятся в установочной папке программы SOFiSTiK – dyna.dat\english. Также примеры решаемых задач можно открыть из модуля TEDDY путем: Файл (File) → Примеры (Examples).

5.1 Колебание одиночной массы – груз на пружине

В данной задаче анализируется колеблющаяся одиночная масса, нагруженная трапецеидальной ударной нагрузкой (рис. 5.1). Необходимо определить динамический коэффициент нагрузки при ударной нагрузке (DLF).

Рис 5.1 – Условие задачи: а – расчетная система; б – действие трапецеидальной нагрузки

Значения размеров и параметров элементов расчетной системы задаются таким образом, чтобы значение деформации при статическом анализе составляло 1 мм. Ввод таких условий в модуль SOFiMSHA выглядит следующим образом:
Ввод таких условий в модуль DYN:

PROG DYN
HEAD $(HEAD1) $(DIRECT)
GRP 0,1
STEP 50 0.04 - - $ 0.01
LC 11 ; LOAD 1 1000.
FUNC 0 0 ; 0.25 1. ; 0.75 1. ; 1.0 0.
EXTR P 2 3 ; HIST U-X 1 LCST 11
END

Результаты расчета выглядят следующим образом:

Controll Information
Number of unknowns 1
unknowns per node 6
Number of timesteps 50
Time-step 0.0400
Printing intervall 1
damping factor A 0.000E+00
damping factor B 0.000E+00
Integr.Parameter beta 0.25
Integr.Parameter delta 0.50
Integr. Parameter theta 1.00

Sum of masses

<table>
<thead>
<tr>
<th>Node</th>
<th>TMX</th>
<th>TMY</th>
<th>TMZ</th>
<th>RMX</th>
<th>RMY</th>
<th>RMZ</th>
<th>RM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[t]</td>
<td>[t]</td>
<td>[t]</td>
<td>[tm2]</td>
<td>[tm2]</td>
<td>[tm2]</td>
<td>[tm2]</td>
</tr>
<tr>
<td></td>
<td>42808.000</td>
<td>42808.000</td>
<td>42808.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Total on

<table>
<thead>
<tr>
<th>S =</th>
<th>[m]</th>
<th>[m]</th>
<th>[m]</th>
<th>0.000</th>
<th>0.000</th>
<th>0.000</th>
<th>0.000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

42808.000 0.000 0.000 0.000 0.000 0.000 0.000

Active

<table>
<thead>
<tr>
<th>S =</th>
<th>[m]</th>
<th>[m]</th>
<th>[m]</th>
<th>0.000</th>
<th>0.000</th>
<th>0.000</th>
<th>0.000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

42808.000 0.000 0.000 0.000 0.000 0.000 0.000

Load Cases

-- Loadcase 11

<table>
<thead>
<tr>
<th>function</th>
<th>Time Factor</th>
<th>Time Factor</th>
<th>Time Factor</th>
<th>Time Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.2500</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>PX</th>
<th>PY</th>
<th>PZ</th>
<th>MX</th>
<th>MY</th>
<th>MZ</th>
<th>Mb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[kN]</td>
<td>[kN]</td>
<td>[kN]</td>
<td>[kNm]</td>
<td>[kNm]</td>
<td>[kNm]</td>
<td>[kNm2]</td>
</tr>
<tr>
<td>1</td>
<td>1000.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Parameter of System of Equations

Number of unknowns 1 (Direct skyline Gauss-Solver)

Total entries 1

Total entries after fill in 1

Mass matrix 1

Damping matrix 1
Maximum Forces and Moments

MAX-P (LC 2) MIN-P (LC 3)

Forces and Displacements of Springs

<table>
<thead>
<tr>
<th>Number</th>
<th>LC</th>
<th>P[kN]</th>
<th>Pq[kN]</th>
<th>M[kNm]</th>
<th>v[mm]</th>
<th>vq[mm]</th>
<th>phi[mrad]</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>2</td>
<td>1821.1</td>
<td>0.00</td>
<td>0.00</td>
<td>1.821</td>
<td>0.000</td>
<td>0.000</td>
<td>1.520</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-1932.3</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.932</td>
<td>0.000</td>
<td>0.000</td>
<td>0.800</td>
</tr>
</tbody>
</table>

Time history for u-X

Node 1 (E 1) MINIMUM = -1.821 MAXIMUM = 1.932 [mm]

stored in database for DYNR with identification no 11

Модальный анализ системы может быть запущен после ввода следующих команд:

PROG DYNA

HEAD $(HEAD1) $(EIGEN)

GRP 0,1 ; EIGE 1

STEP 50 0.04 -- $ 0.01

LC 21 ; LOAD 1 1000.

FUNC 0 0 ; 0.25 1. ; 0.75 1. ; 1.0 0.

EXTR P 2 3 ; HIST U-X 1 LCST 21

END

Полученные результаты немного отличаются от результатов, представленных выше:

Controll Information

Number of unknowns 1

unknowns per node 6

Number eigenvalues 1

Number of timesteps 50
Time-step: 0.0400

Printing intervall: 1

damping factor A: 0.000E+00

damping factor B: 0.000E+00

Sum of masses

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>total on S =</td>
<td>42808.000</td>
<td>42808.000</td>
<td>42808.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>active on S =</td>
<td>42808.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Parameter of System of Equations

Number of unknowns: 1 (Direct skyline Gauss-Solver)

Total entries: 1

Total entries after fill in: 1

Mass matrix: 1

Damping matrix: 1

Eigenfrequencies

Using Vectoriteration

Iterations vectors: 1

Iterations: 2
Mass matrix 1
Damping matrix 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.3360E+01</td>
<td>0.00E+00</td>
<td>4.833</td>
<td>0.769</td>
<td>1.300</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Load Cases

-- Loadcase 21

<table>
<thead>
<tr>
<th>function</th>
<th>Time Factor</th>
<th>Time Factor</th>
<th>Time Factor</th>
<th>Time Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0000</td>
<td>0.000</td>
<td>0.2500</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>0.7500</td>
<td>1.000</td>
<td>1.0000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Node

<table>
<thead>
<tr>
<th>Node</th>
<th>PX [kN]</th>
<th>PY [kN]</th>
<th>PZ [kN]</th>
<th>MX [kNm]</th>
<th>MY [kNm]</th>
<th>MZ [kNm]</th>
<th>Mb [kNm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Modal load contributions per function

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1</td>
<td>4.833E+00</td>
<td>2.336E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum modal factors in time history

Mode 1: 4.009E-01

Maximum Forces and Moments

MAX-P (LC 2) MIN-P (LC 3)
Forces and Displacements of Springs

<table>
<thead>
<tr>
<th>Number</th>
<th>LC</th>
<th>P[kN]</th>
<th>Pq[kN]</th>
<th>M[kNm]</th>
<th>v[mm]</th>
<th>vq[mm]</th>
<th>phi[mrad]</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>2</td>
<td>1825.4</td>
<td>0.00</td>
<td>0.00</td>
<td>1.825</td>
<td>0.000</td>
<td>0.000</td>
<td>1.480</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-1937.8</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.938</td>
<td>0.000</td>
<td>0.000</td>
<td>0.760</td>
</tr>
</tbody>
</table>

Time history for u-X

Node 1 (E 1) MINIMUM = -1.825 MAXIMUM = 1.938 [mm]
stored in database for DYNR with identification no 21

Графики, представленные ниже в руководстве, показывают изменение амплитуды колебаний при разных значениях параметра демпфирования. Модальное демпфирование колебаний системы выглядит следующим образом:

GRP 2 ; SPRI 1 1 2 CP 1000000. DP 10000. $Демпфирование нижних крит-их зн-ий
GRP 3 ; SPRI 1 1 2 CP 1000000. DP 413736. $ Демпфирование крит-их зн-ий
GRP 4 ; SPRI 1 1 2 CP 1000000. DP 1000000. $Демпфирование верхних крит-х зн-й

Рис. 5.2 – Демпфирование докритических значений колебаний
Рис. 5.3 – Демпфирование критических значений колебаний

Рис. 5.4 – Демпфирование надкритических значений колебаний
5.2 Частота собственных колебаний изогнутой балки

Модуль DYNAX позволяет определить значения собственных частот колебаний расчетных систем при помощи метода конечных элементов – FEM. Учитывая этот факт, рассматриваемую расчетную систему необходимо разделить на множество степеней свободы, чтобы можно было правильно зарегистрировать распределение масс. Многие другие расчетные комплексы для динамических расчетов используют только трансляционные массы, которые объединены в диагональные/диагонализированные векторы масс. Также модуль DYNAX может проанализировать вращательные массы и согласованные матрицы масс с младшими диагональными членами. Ниже описана расчетная система в виде простой балки, состоящей из двух элементов, для которой определяются собственные значения:

PROG AQUA

HEAD

NORM DIN

STEE 1 S 235

SVAL 1 A 2.14E-2 IY 1.1905E-4

SVAL 2 A 2.14E-2 AZ 1.5E-5 IY 1.1905E-4

END

PROG SOFIMSHA

HEAD NATURAL FREQUENCIES OF A BENDING BEAM (PETERSEN S. 590)

TXB THEORETICAL SOLUTION:

<table>
<thead>
<tr>
<th>TXB</th>
<th>BENDING</th>
<th>F1 = 2.158 Hz</th>
<th>F2 = 13.528 Hz</th>
<th>F3 = 37.879 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXB STEU MCON 1</td>
<td>1.938</td>
<td>9.982</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TXB STEU MCON 2</td>
<td>2.105</td>
<td>14.735</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TXB STEU MCON 3</td>
<td>2.105</td>
<td>4.721</td>
<td>- Hz</td>
<td></td>
</tr>
<tr>
<td>TXB TORSION</td>
<td>T1 = 24.587 Hz</td>
<td>T2 = 73.762 Hz</td>
<td>(t_3) =122.936 Hz</td>
<td></td>
</tr>
</tbody>
</table>

TXB STEU MCON 3 ; WARP 0 25.219 88.099 -
Для оценки работы модуля *DYNA* было проанализировано четыре варианта рассматриваемой расчетной системы:

1) Только трансляционная диагональная матрица масс

```
PROG DYNA
HEAD INVERSE VECTOR ITERATION
CTRL MCON 1
EIGE 4 SIMU
END
```

В этой записи говориться о том, что при использовании алгоритма Ланцоша для определения собственных значений расчетной системы могут возникнуть проблемы, так как в системе имеется дополнительная степень свободы (вращения) без массы. Из этого следует, что применение для дальнейшего анализа последней собственной формы системы может быть совершенно бесполезно.

2) Присоединенные трансляционные массы

```
PROG DYNA
CTRL MCON 2
EIGE 6 LANC 6 ; ECHO EIGE
END
```

При таком подходе трансляционные участки преобразуются в соответствующие вращательные массы в начале и в конце изогнутой балки.
3) Присоединенные вращательные массы

```
PROG DYNA
CTRL MCON 3
EIGE 8 LANC 8 ; ECHO EIGE
END
CTRL MCON 3 ; CTRL WARP 1
EIGE 10 LANC 10
END
```

Последний блок программного кода добавляет в расчетную систему вращательные массы, а самый последний вариант этого кода, ввиду наличия объемных вращательных степеней свободы, добавляет в систему более значительные крутильные колебания.

Вся теория по данной тематике представлена в книге «Peterson, Dynamik der Baukostruktionen/Петерсен, Динамика строительных конструкций»:

<table>
<thead>
<tr>
<th></th>
<th>f1</th>
<th>f2</th>
<th>f3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending oscillations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical solution</td>
<td>2.158 Hz</td>
<td>13.528 Hz</td>
<td>37.879 Hz</td>
</tr>
<tr>
<td>CTRL MCON 1</td>
<td>1.938</td>
<td>9.982</td>
<td></td>
</tr>
<tr>
<td>CTRL MCON 2</td>
<td>2.105</td>
<td>14.735</td>
<td></td>
</tr>
<tr>
<td>CTRL MCON 3</td>
<td>2.105</td>
<td>14.721</td>
<td></td>
</tr>
<tr>
<td>Torsional oscillations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical solution</td>
<td>24.587 Hz</td>
<td>73.762 Hz</td>
<td>122.936 Hz</td>
</tr>
<tr>
<td>CTRL MCON 3; WARP 0</td>
<td>25.219</td>
<td>88.099</td>
<td></td>
</tr>
<tr>
<td>WARP 1</td>
<td>24.583</td>
<td>73.855</td>
<td>125.628</td>
</tr>
</tbody>
</table>

Необходимо понимать, что в случае грубого деления расчетной системы (балки) на две части понижается точность значений более высоких собственных форм колебаний и, что подобное решение не гарантирует необходимую точность.
результатов, полученных в ходе динамического анализа. Такие значения НЕ СЛЕДУЕТ использовать при дальнейшем расчете системы.

Controll Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of unknowns</td>
<td>10 (Direct skyline solver)</td>
</tr>
<tr>
<td>unknowns per node</td>
<td>6</td>
</tr>
<tr>
<td>Total skyline</td>
<td>55</td>
</tr>
<tr>
<td>Mass matrix</td>
<td>10 (diagonal)</td>
</tr>
<tr>
<td>Number eigenvalues</td>
<td>4</td>
</tr>
</tbody>
</table>

Beam Elements/Балочные элементы

Finite beam elements without intermediate sections/Конечные элементы балки без промежуточных сечений

Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam/Деформации сдвига объясняются несоответствием расчетной системы балке Тимошенко, включенной в ПК SOFiSTiK

Sum of masses

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>total on S =</td>
<td>1.680</td>
<td>1.680</td>
<td>1.680</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>20.999</td>
</tr>
<tr>
<td>active on S =</td>
<td>0.000</td>
<td>1.260</td>
<td>1.260</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>62.996</td>
</tr>
</tbody>
</table>

152
Eigenfrequencies

Using Vectoriteration

Iterationsvectors 4
Iterations 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.4825E+02</td>
<td>5.75E-16</td>
<td>12.176</td>
<td>1.938</td>
<td>0.516</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.4825E+02</td>
<td>3.83E-16</td>
<td>12.176</td>
<td>1.938</td>
<td>0.516</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.9337E+03</td>
<td>3.25E-14</td>
<td>62.719</td>
<td>9.982</td>
<td>0.100</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3.9337E+03</td>
<td>2.89E-15</td>
<td>62.719</td>
<td>9.982</td>
<td>0.100</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Controll Information

Number of unknowns 10 (Direct skyline solver)
unknowns per node 6
Total skyline 55
Mass matrix 55 (consistent)
Number eigenvalues 6

Beam Elements

Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK–Timoshenko beam
Sum of masses

<table>
<thead>
<tr>
<th>Node</th>
<th>TMX</th>
<th>TMY</th>
<th>TMZ</th>
<th>RMX</th>
<th>RMY</th>
<th>RMZ</th>
<th>RM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[t]</td>
<td>[t]</td>
<td>[t]</td>
<td>[tm2]</td>
<td>[tm2]</td>
<td>[tm2]</td>
<td>[tm2]</td>
</tr>
</tbody>
</table>

total on	1.680	1.680	1.680	0.000	0.000	0.000	0.000
S =	[m]	[m]	[m]	0.000	0.000	0.000	20.999
	5.000	0.000	0.000	0.000	20.999	0.000	0.000

active on S =	0.000	1.260	1.260	0.000	0.000	0.000	0.000
	[m]	[m]	[m]	0.000	0.000	0.000	62.996
	0.000	0.000	0.000	0.000	62.996	0.000	0.000

Eigenfrequencies

Using Lanczos Method

Iterations vectors 6

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.7494E+02</td>
<td>0.00E+00</td>
<td>13.227</td>
<td>2.105</td>
<td>0.475</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.7494E+02</td>
<td>0.00E+00</td>
<td>13.227</td>
<td>2.105</td>
<td>0.475</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8.5721E+03</td>
<td>4.20E-45</td>
<td>92.586</td>
<td>14.735</td>
<td>0.068</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8.5721E+03</td>
<td>1.40E-45</td>
<td>92.586</td>
<td>14.735</td>
<td>0.068</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2.8327E+14</td>
<td>6.35E-28</td>
<td>16830556.</td>
<td>2678666.0</td>
<td>0.000</td>
<td>0.00000</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7.8850E+14</td>
<td>7.61E-27</td>
<td>28080302.</td>
<td>4469118.5</td>
<td>0.000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>
Controll Information

Number of unknowns: 10 (Direct skyline solver)
unknowns per node: 6
Total skyline: 55
Mass matrix incl. rotational: 55 (consistent)
masses
Number eigenvalues: 8

Beam Elements

Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam

Sum of masses

<table>
<thead>
<tr>
<th>Node</th>
<th>TMX</th>
<th>TMY</th>
<th>TMZ</th>
<th>RMX</th>
<th>RMY</th>
<th>RMZ</th>
<th>RM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[t]</td>
<td>[t]</td>
<td>[t]</td>
<td>[tm2]</td>
<td>[tm2]</td>
<td>[tm2]</td>
<td>[tm2]</td>
</tr>
</tbody>
</table>

total on
S =
<table>
<thead>
<tr>
<th>Node</th>
<th>TMX</th>
<th>TMY</th>
<th>TMZ</th>
<th>RMX</th>
<th>RMY</th>
<th>RMZ</th>
<th>RM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
</tr>
<tr>
<td>total on</td>
<td>1.680</td>
<td>1.680</td>
<td>1.680</td>
<td>0.019</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>S =</td>
<td>5.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>20.999</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>20.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>active on S =</td>
<td>0.000</td>
<td>1.260</td>
<td>1.260</td>
<td>0.014</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>on S =</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>62.996</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>62.996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eigenfrequencies

Using Lanczos Method

Iterationsvectors: 8
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.7490E+02</td>
<td>1.19E-43</td>
<td>13.225</td>
<td>2.105</td>
<td>0.475</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.7490E+02</td>
<td>1.08E-43</td>
<td>13.225</td>
<td>2.105</td>
<td>0.475</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8.5550E+03</td>
<td>4.66E-32</td>
<td>92.493</td>
<td>14.721</td>
<td>0.068</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8.5550E+03</td>
<td>1.95E-32</td>
<td>92.493</td>
<td>14.721</td>
<td>0.068</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2.5108E+04</td>
<td>4.56E-36</td>
<td>158.454.</td>
<td>25.219</td>
<td>0.040</td>
<td>0.00000</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3.0641E+05</td>
<td>8.95E-33</td>
<td>553.541</td>
<td>88.099</td>
<td>0.011</td>
<td>0.00000</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1.7637E+07</td>
<td>4.67E-31</td>
<td>4199.636</td>
<td>668.393</td>
<td>0.001</td>
<td>0.00000</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>5.2783E+07</td>
<td>4.99E-30</td>
<td>7265.172</td>
<td>1156.288</td>
<td>0.001</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Controll Information

Number of unknowns 13 (Direct skyline solver)

unknowns per node 7

Total skyline 85

Mass matrix incl. rotational masses 85 (consistent)

Number eigenvalues 10

Beam Elements

Finite beam elements without intermediate sections

Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam
Sum of masses

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1.680</td>
<td>1.680</td>
<td>1.680</td>
<td>0.019</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>on S =</td>
<td>5.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>20.999</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.999</td>
<td></td>
</tr>
<tr>
<td>active</td>
<td>0.000</td>
<td>1.260</td>
<td>1.260</td>
<td>0.014</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>on S =</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>62.996</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.996</td>
<td></td>
</tr>
</tbody>
</table>

Eigenfrequencies

Using Lanczos Method

Iterations vectors 10

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.7490E+02</td>
<td>1.00E-21</td>
<td>13.225</td>
<td>2.105</td>
<td>0.475</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.7490E+02</td>
<td>6.72E-22</td>
<td>13.225</td>
<td>2.105</td>
<td>0.475</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8.5550E+03</td>
<td>6.43E-07</td>
<td>92.493</td>
<td>14.721</td>
<td>0.068</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8.5550E+03</td>
<td>2.75E-07</td>
<td>92.493</td>
<td>14.721</td>
<td>0.068</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2.3858E+04</td>
<td>2.08E-10</td>
<td>154.460</td>
<td>24.583</td>
<td>0.041</td>
<td>0.00000</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2.1534E+05</td>
<td>1.43E-05</td>
<td>464.046</td>
<td>73.855</td>
<td>0.014</td>
<td>0.00000</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6.2307E+05</td>
<td>1.07E-03</td>
<td>789.345</td>
<td>125.628</td>
<td>0.008</td>
<td>0.00000</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1.5403E+06</td>
<td>1.28E-02</td>
<td>1241.094</td>
<td>197.526</td>
<td>0.005</td>
<td>0.00000</td>
</tr>
</tbody>
</table>
5.3 Собственные колебания абсолютно твердого тела

Следующий пример иллюстрирует влияние кинематических ограничений на расчет собственных частот. Расчетная система представлена в виде жесткой плиты размером 4 x 6 метра, опираемой на четыре балки высотой по 2 метра каждая:

Рис. 5.5 – Схема расчетной системы

Ввод подобной расчетной системы в ПК SOFiSTiK при помощи модулей AQUA и SOFiMSHA выглядит следующим образом:

```
PROG AQUA
HEAD STORY WITH DIAPHRAGMATIC OPERATION
HEAD CENTRIC ALTERNATIVE
NORM EC 2
CONC 1 ; SREC 1 H 0.4 B 0.4
MATE 2 1E9 GAM 0.0
END
```
Далее, для расчета шести собственных значений системы можно задействовать модуль DYNA:

PROG DYNA

```
CTRL WARP 0 ; CTRL BTYP 3*4
ECHO EIGE ; EIGE 6 SIMU 6
END
```

Собственные значения относительно близки между собой:

Controll Information

- Number of unknowns: 54
- unknowns per node: 6
- Number eigenvalues: 6
Beam Elements/Элементы балки

Finite beam elements without intermediate sections/Конечные элементы балки без промежуточных сечений

Shear deformations accounted for with stiffness correction for standard beam/Учитываемые значения деформаций сдвига зависят от коррекции жесткости стандартной балки

Sum of masses

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>total on</td>
<td>3.200</td>
<td>3.200</td>
<td>3.200</td>
<td>0.005</td>
<td>0.005</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>S =</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>30.104</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.000</td>
<td>3.000</td>
<td>1.000</td>
<td>0.000</td>
<td>14.104</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>41.600</td>
</tr>
<tr>
<td>active</td>
<td>2.667</td>
<td>2.667</td>
<td>2.667</td>
<td>0.004</td>
<td>0.004</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>on S =</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>24.664</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.000</td>
<td>3.000</td>
<td>1.200</td>
<td>0.000</td>
<td>11.330</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>34.667</td>
</tr>
</tbody>
</table>

Parameter of System of Equations

Number of unknowns | 54 (Direct skyline Gauss-Solver)
Total entries | 183
Total entries after fill in | 617
Mass matrix | 168

Eigenfrequencies

Using Vector iteration

Iterations vectors | 10
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.9947E+05</td>
<td>1.17E-15</td>
<td>54.7240</td>
<td>87.096</td>
<td>0.011</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3.0032E+05</td>
<td>3.88E-16</td>
<td>54.7240</td>
<td>87.219</td>
<td>0.011</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.0622E+05</td>
<td>3.80E-16</td>
<td>553.374</td>
<td>88.072</td>
<td>0.011</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4.8544E+06</td>
<td>1.15E-07</td>
<td>2203.270</td>
<td>350.661</td>
<td>0.003</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4.8544E+06</td>
<td>6.66E-07</td>
<td>2203.271</td>
<td>350.661</td>
<td>0.003</td>
<td>0.00000</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4.9411E+06</td>
<td>1.96E-02</td>
<td>2222.865</td>
<td>353.780</td>
<td>0.003</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Nodal Displacements

<table>
<thead>
<tr>
<th>Eigenform 1</th>
<th>Loadcase 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>890.240</td>
</tr>
<tr>
<td>6</td>
<td>890.240</td>
</tr>
<tr>
<td>7</td>
<td>890.240</td>
</tr>
<tr>
<td>8</td>
<td>890.240</td>
</tr>
<tr>
<td>9</td>
<td>890.240</td>
</tr>
<tr>
<td>1001</td>
<td>257.553</td>
</tr>
<tr>
<td>1002</td>
<td>690.386</td>
</tr>
<tr>
<td>1003</td>
<td>257.553</td>
</tr>
<tr>
<td>1004</td>
<td>690.386</td>
</tr>
<tr>
<td>1005</td>
<td>257.553</td>
</tr>
</tbody>
</table>
Nodal Displacements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
<td>889.153</td>
<td>8.725</td>
<td>-2.908</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>889.153</td>
<td>8.725</td>
<td>-2.908</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>0.000</td>
<td>889.153</td>
<td>-8.725</td>
<td>-2.908</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>889.153</td>
<td>-8.725</td>
<td>-2.908</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>889.153</td>
<td>0.000</td>
<td>-2.908</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1001</td>
<td>0.000</td>
<td>257.905</td>
<td>2.954</td>
<td>-641.360</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1002</td>
<td>0.000</td>
<td>690.762</td>
<td>5.873</td>
<td>-550.785</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1003</td>
<td>0.000</td>
<td>257.905</td>
<td>2.954</td>
<td>-641.360</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1004</td>
<td>0.000</td>
<td>690.762</td>
<td>5.873</td>
<td>-550.785</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1005</td>
<td>0.000</td>
<td>257.905</td>
<td>-2.954</td>
<td>-641.360</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1006</td>
<td>0.000</td>
<td>690.762</td>
<td>-5.873</td>
<td>-550.785</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1007</td>
<td>0.000</td>
<td>257.905</td>
<td>-2.954</td>
<td>-641.360</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1008</td>
<td>0.000</td>
<td>690.762</td>
<td>-5.873</td>
<td>-550.785</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Node</td>
<td>Node</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>738.652</td>
<td>-492.435</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>246.217</td>
</tr>
<tr>
<td>6</td>
<td>738.652</td>
<td>492.435</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>246.217</td>
</tr>
<tr>
<td>7</td>
<td>-738.652</td>
<td>492.435</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>246.217</td>
</tr>
<tr>
<td>8</td>
<td>-738.652</td>
<td>-492.435</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>246.217</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>246.217</td>
</tr>
<tr>
<td>1001</td>
<td>215.131</td>
<td>-143.421</td>
<td>0.000</td>
<td>356.352</td>
<td>534.529</td>
<td>82.072</td>
</tr>
<tr>
<td>1002</td>
<td>575.168</td>
<td>-383.445</td>
<td>0.000</td>
<td>304.510</td>
<td>456.765</td>
<td>164.145</td>
</tr>
<tr>
<td>1003</td>
<td>215.131</td>
<td>143.421</td>
<td>0.000</td>
<td>-356.352</td>
<td>534.529</td>
<td>82.072</td>
</tr>
<tr>
<td>1004</td>
<td>575.168</td>
<td>383.445</td>
<td>0.000</td>
<td>-304.510</td>
<td>456.765</td>
<td>164.145</td>
</tr>
<tr>
<td>1005</td>
<td>-215.131</td>
<td>143.421</td>
<td>0.000</td>
<td>-356.352</td>
<td>-534.529</td>
<td>82.072</td>
</tr>
<tr>
<td>1006</td>
<td>-575.168</td>
<td>383.445</td>
<td>0.000</td>
<td>-304.510</td>
<td>-456.765</td>
<td>164.145</td>
</tr>
<tr>
<td>1007</td>
<td>-215.13</td>
<td>-143.421</td>
<td>0.000</td>
<td>356.352</td>
<td>-534.529</td>
<td>82.072</td>
</tr>
<tr>
<td>1008</td>
<td>-575.168</td>
<td>-383.445</td>
<td>0.000</td>
<td>304.510</td>
<td>-456.765</td>
<td>164.145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>0.417</td>
</tr>
<tr>
<td>6</td>
<td>0.417</td>
</tr>
<tr>
<td>7</td>
<td>0.305</td>
</tr>
<tr>
<td>8</td>
<td>0.305</td>
</tr>
<tr>
<td>9</td>
<td>0.361</td>
</tr>
<tr>
<td>1001</td>
<td>-745.386</td>
</tr>
<tr>
<td>1002</td>
<td>-745.182</td>
</tr>
</tbody>
</table>
Nodal Displacements

Eigenform 6

<table>
<thead>
<tr>
<th>Node</th>
<th>$u_x[\text{mm}]$</th>
<th>$u_y[\text{mm}]$</th>
<th>$u_z[\text{mm}]$</th>
<th>$u_{xx}[\text{mrad}]$</th>
<th>$u_{yy}[\text{mrad}]$</th>
<th>$u_{zz}[\text{mrad}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>-4.471</td>
<td>42.063</td>
<td>129.189</td>
<td>-50.082</td>
<td>-6.006</td>
<td>0.027</td>
</tr>
<tr>
<td>6</td>
<td>-4.471</td>
<td>42.169</td>
<td>153.215</td>
<td>-50.082</td>
<td>-6.006</td>
<td>0.027</td>
</tr>
<tr>
<td>7</td>
<td>-4.631</td>
<td>42.169</td>
<td>-147.280</td>
<td>-50.082</td>
<td>-6.006</td>
<td>0.027</td>
</tr>
<tr>
<td>8</td>
<td>-4.631</td>
<td>42.063</td>
<td>-171.305</td>
<td>-50.082</td>
<td>-6.006</td>
<td>0.027</td>
</tr>
<tr>
<td>9</td>
<td>-4.551</td>
<td>42.116</td>
<td>-9.045</td>
<td>-50.082</td>
<td>-6.006</td>
<td>0.027</td>
</tr>
<tr>
<td>1001</td>
<td>0.596</td>
<td>-134.321</td>
<td>64.372</td>
<td>202.916</td>
<td>-0.079</td>
<td>0.009</td>
</tr>
<tr>
<td>1002</td>
<td>-1.132</td>
<td>-116.551</td>
<td>111.624</td>
<td>-249.480</td>
<td>-4.562</td>
<td>0.018</td>
</tr>
<tr>
<td>1003</td>
<td>-515.979</td>
<td>175.947</td>
<td>76.310</td>
<td>-291.103</td>
<td>-822.498</td>
<td>0.009</td>
</tr>
<tr>
<td>1004</td>
<td>-517.707</td>
<td>193.792</td>
<td>132.344</td>
<td>244.365</td>
<td>817.857</td>
<td>0.018</td>
</tr>
<tr>
<td>1005</td>
<td>819.511</td>
<td>543.176</td>
<td>-73.417</td>
<td>-875.755</td>
<td>1303.606</td>
<td>0.009</td>
</tr>
<tr>
<td>1006</td>
<td>817.671</td>
<td>561.021</td>
<td>-127.291</td>
<td>829.017</td>
<td>-1308.510</td>
<td>0.018</td>
</tr>
<tr>
<td>1007</td>
<td>-290.838</td>
<td>-711.961</td>
<td>-85.355</td>
<td>1122.554</td>
<td>-464.139</td>
<td>0.009</td>
</tr>
<tr>
<td>1008</td>
<td>-292.678</td>
<td>-694.190</td>
<td>-148.011</td>
<td>-1169.118</td>
<td>459.235</td>
<td>0.018</td>
</tr>
</tbody>
</table>
Если вместо центрального узла кинематическое ограничение задается в угловом узле, который статически эквивалентен центральному, то одни и те же собственные значения системы возникают только тогда, когда используются согласованные матрицы масс (*CTRL MCON 2*, по умолчанию). Если в этом случае перейти к диагональным матрицам, то отчасти это приведет к очень большим отклонениям результатов. Ввод расчетной системы выглядит следующим образом:

PROG SOFIMSHA
HEAD STORY WITH DIAPHRAGMATIC OPERATION DYNA MANUAL
HEAD ECCENTRIC ALTERNATIVE
SYST SPAC GDIR NEGZ
NODE 1 0 0 0 F
NODE 2 4 0 0 F
NODE 3 4 6 0 F
NODE 4 0 6 0 F
NODE 5 0 0 2
NODE 6 4 0 2
NODE 7 4 6 2
NODE 8 0 6 2
NODE 6,7,8 FIX KF 5
BEAM (1 4 1) (1 1) (5 1)
END

Используя команду *CTRL MCON 1* и все остальные входные данные в модуле *DYNA*, получаются следующие результаты:

Eigenfrequencies
Using Vectoriteration
Iterations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.4697E+04</td>
<td>1.33E-16</td>
<td>233.874</td>
<td>37.222</td>
<td>0.027</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>-8.4076E+04</td>
<td>0.00E+00</td>
<td>-289.959</td>
<td>-46.148</td>
<td>-0.022</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>2.2353E+05</td>
<td>1.69E-15</td>
<td>472.787</td>
<td>75.246</td>
<td>0.013</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>8.0516E+05</td>
<td>3.90E-15</td>
<td>897.306</td>
<td>142.811</td>
<td>0.007</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>3.4839E+06</td>
<td>6.90E-14</td>
<td>1866.519</td>
<td>142.811</td>
<td>0.003</td>
<td>0.00000</td>
</tr>
<tr>
<td>6</td>
<td>1.3084E+07</td>
<td>1.79E-13</td>
<td>3617.160</td>
<td>575.689</td>
<td>0.002</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Nodal Displacements

Eigenform 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>124.885</td>
<td>-431.087</td>
<td>-5.661</td>
<td>1.414</td>
<td>-0.656</td>
<td>61.580</td>
</tr>
<tr>
<td>6</td>
<td>124.885</td>
<td>-184.769</td>
<td>-3.037</td>
<td>1.414</td>
<td>-0.656</td>
<td>61.580</td>
</tr>
<tr>
<td>7</td>
<td>-244.592</td>
<td>-184.769</td>
<td>5.446</td>
<td>1.414</td>
<td>-0.656</td>
<td>61.580</td>
</tr>
<tr>
<td>8</td>
<td>-244.592</td>
<td>-431.087</td>
<td>2.822</td>
<td>1.414</td>
<td>-0.656</td>
<td>61.580</td>
</tr>
</tbody>
</table>

Eigenform 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Nodal Displacements
Eigenform 3
Loadcase 3
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>-153.716</td>
<td>-157.938</td>
<td>-0.013</td>
<td>2.148</td>
<td>3.216</td>
<td>-151.567</td>
</tr>
<tr>
<td>7</td>
<td>755.686</td>
<td>-764.206</td>
<td>0.011</td>
<td>2.148</td>
<td>3.216</td>
<td>-151.567</td>
</tr>
</tbody>
</table>

Nodal Displacements
Eigenform 4
Loadcase 4
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>12.786</td>
<td>-5.654</td>
<td>505.744</td>
<td>-57.381</td>
<td>96.222</td>
<td>1.927</td>
</tr>
</tbody>
</table>
Nodal Displacements

Eigenform 5
Loadcase 5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>7.219</td>
<td>3.280</td>
<td>-70.053</td>
<td>140.259</td>
<td>217.664</td>
<td>2.508</td>
</tr>
<tr>
<td>6</td>
<td>7.219</td>
<td>13.310</td>
<td>-940.709</td>
<td>140.259</td>
<td>217.664</td>
<td>2.508</td>
</tr>
<tr>
<td>7</td>
<td>-7.826</td>
<td>13.310</td>
<td>-99.152</td>
<td>140.259</td>
<td>217.664</td>
<td>2.508</td>
</tr>
<tr>
<td>8</td>
<td>-7.826</td>
<td>3.280</td>
<td>771.504</td>
<td>140.259</td>
<td>217.664</td>
<td>2.508</td>
</tr>
</tbody>
</table>

Eigenform 6
Loadcase 6

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>-1.283</td>
<td>1.008</td>
<td>227.713</td>
<td>170.621</td>
<td>-146.610</td>
<td>-0.064</td>
</tr>
<tr>
<td>6</td>
<td>-1.283</td>
<td>0.752</td>
<td>814.154</td>
<td>170.621</td>
<td>-146.610</td>
<td>-0.064</td>
</tr>
<tr>
<td>7</td>
<td>-0.899</td>
<td>0.752</td>
<td>1837.878</td>
<td>170.621</td>
<td>-146.610</td>
<td>-0.064</td>
</tr>
<tr>
<td>8</td>
<td>-0.899</td>
<td>1.008</td>
<td>1251.437</td>
<td>170.621</td>
<td>-146.610</td>
<td>-0.064</td>
</tr>
</tbody>
</table>
Если бы сооружение было проанализировано с использованием жесткой пластины \((d = 2,0 \text{ м})\) вместо жесткого кинематического ограничения, то результирующие частоты и формы колебаний были бы аналогичны тем, что были в первом случае загружения:

Eigenfrequencies

Using Vectoriteration

<table>
<thead>
<tr>
<th>No.</th>
<th>LC</th>
<th>Eigenvalue ([1/\text{sec}^2])</th>
<th>Relative Error ([\text{1/sec}])</th>
<th>Omega ([\text{1/sec}])</th>
<th>Frequency ([\text{Hertz}])</th>
<th>Period ([\text{sec}])</th>
<th>Damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.9884E+05</td>
<td>3.90E-16</td>
<td>546.659</td>
<td>87.004</td>
<td>0.011</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.9980E+05</td>
<td>9.71E-16</td>
<td>547.540</td>
<td>87.144</td>
<td>0.011</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.0057E+05</td>
<td>0.00E+00</td>
<td>548.239</td>
<td>87.255</td>
<td>0.011</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4.6718E+06</td>
<td>8.87E-07</td>
<td>2161.438</td>
<td>344.003</td>
<td>0.003</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4.6721E+06</td>
<td>1.97E-06</td>
<td>2161.510</td>
<td>344.015</td>
<td>0.003</td>
<td>0.00000</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4.6726E+06</td>
<td>1.57E-06</td>
<td>2161.609</td>
<td>344.031</td>
<td>0.003</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

5.4 Колебание системы из двух масс

5.4.1 Суперпозиция/наложение собственных форм

Если рассматривать колебания одиночной массы с собственной частотой \(\omega\) при действии вынужденных стационарных колебаниях с частотой \(\Omega\), то возникающее явление резонанса изменит fazu колебаний на один шаг, но только при условии, если отсутствует явное демпфирование колебаний, но имеется плавный переход при их затухании. При более низких частотах колебаний \((\omega > \Omega\), значения возбуждающих параметров и реакций/откликов системы получены в
приблизительно равных фазах колебаний) значение отклика системы отлично от отклика, возникающего при более высоких частотах колебаний ($\omega < \Omega$, значения возбуждающих параметров и реакций/откликов системы получены в противоположных фазах колебаний). Однако, реакция/отклик системы не определяет значение шага, но в случае возникновения явления резонанса фаза колебаний приблизительно равна $T/4$.

Более сложная ситуация возникает в случае колебания многоэлементной системы. Так при анализе одиночной формы колебаний, приложенной к такой системе, с одной и той же частотой во всех элементах возникают разные модальные амплитуды и фазы. Для определения максимального значения реакции/отклика системы необходимо ввести колебания в состояние суперпозиции во времени, анализируя определенный период времени установившегося в системе состояния (это можно сделать в модуле DYNA при помощи ввода в систему команды $STEP$ -NN), либо путем учета значений фаз в процессе ввода в систему состояния суперпозиции.

Для понимания колебательных процессов многоэлементных систем сначала будет рассмотрена простая двухэлементная система с одним возбуждающим
усилием (рис. 5.6). Данный пример взят из учебного пособия – _dynamic seminar Ramm/Müller/Burmeister/Schweizerhof et al.1983_.

![Diagram](image)

Рис. 5.6 – Расчетная система

Собственные колебания системы определяются по формуле:

$$\frac{w_1}{w_2} = \frac{19,544}{51,167}$$

Спектры частот колебаний показывают возникновение явления антирезонанса в нижних узлах расчетной системы:

![Graphs](image)

Рис. 5.7 – Явление антирезонанса
Для укрупненного анализа спектров частот рассматриваются только фазы колебаний, изменения при этом знак амплитуды колебаний системы (рис. 5.8).

Рис. 5.8 – График колебаний системы

Точка системы, в которой возникает явление антирезонанса, идентифицируется, как нулевая точка на графике (рис. 5.9). Поскольку значения фаз колебаний рассчитаны лишь приближенно, то проектировщику нужно быть осторожным и руководствоваться конкретной методикой анализа многоэлементных колебательных систем. Теперь значения полученных амплитуд колебаний будут только положительными (рис. 5.9).

Рис. 5.9 – График колебаний системы
Для подтверждения возникновения явления антирезонанса в колебательной системе необходимо провести анализ переходных процессов с частотой \(\omega_0 \). Поскольку программа позволяет выводить результаты анализа в графическом виде, то можно увидеть, что реакция/отклик системы в первой точке (где приложена нагрузка) на самом деле очень мал (рис. 5.10). Реакция системы во второй точке имеет гораздо более высокое значение (около 0,9 мм). Эти значения достаточно точно соответствуют спектрам частот колебаний, приведенным выше.

![График колебаний системы](image)

Рис. 5.10 – График колебаний системы

Ввиду влияния на систему явления антирезонанса, все верхние части сооружения (конструкции) колеблются относительно его серединной части, что в результате приводит к равновесию между возбуждающим колебания усилием и силами сопротивления, возникающими в верхней части – условие равновесия системы.

Однако, максимальные значения амплитуд колебаний, полученные при помощи приближенного и, при помощи конкретной методики расчета, не сильно отличаются друг от друга (табл. 5.1).
Таблица 5.1 – Результаты расчета максимальных значений амплитуд колебаний

<table>
<thead>
<tr>
<th></th>
<th>(u-2)</th>
<th>(u-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Приближенные значения фаз</td>
<td>7,456 мм</td>
<td>11,344 мм</td>
</tr>
<tr>
<td>Конкретные значения фаз</td>
<td>7,226 мм</td>
<td>11,491 мм</td>
</tr>
</tbody>
</table>

Файл с примером *DYNA1_2M.DAT*:

```plaintext
PROG SOFIMSHA
HEAD TWO MASS OSCILLATOR
SYST FRAM GDIR POSY
NODE 1 0 FIX F
  2 1 FIX XP
  3 2 FIX XP
SPRI 101,102 1,2 2,3 CP 1E4
MASS 1,2,3 10.0
END
PROG DYNA
HEAD EIGENVALUES
  \(\omega - 0 = \sqrt{k/m} = 31.623 \div \omega_{1/2} = 19.544 \div 51.167\)
STO #OMEGA0 31.622777
ECHO EIGE ; EIGE 2 SIMU 2 ; MODD 1,2 0.05
END
PROG DYNA
HEAD FREQUENCY RESPONSE OLD VERSION WITH APPROXIMATED PHASE
EIGE 2 REST ; CTRL STYP 1 ; CTRL SRES 0
STEP 200 0.075 FREQ \$ 3 OMEGA-0 = 15 Hertz
LC 10 ; LOAD 2 PX 10.0 ; FUNC 1.0 1.0 0.0
HIST U-X 2 3 1 LCST 10
```
5.4.2 Суперпозиция/наложение колебаний и спектров

Следующий пример немного сложнее. Если в разных местах расчетной системы с разными или случайно распределенными фазами колебаний приложено одновременно несколько усилий, то детерминированный анализ такого рода динамического нагружения становится невозможным. В таких условиях ввод результатов анализа в состояние суперпозиции осуществляется при помощи энергетического SRSS-метода (квадратный корень из суммы квадратов).

Расчетная система представлена в виде колеблющейся балки, состоящей из двух эффективных масс и трех стержней (файл с примером: DYNA1_2B.DAT):

![Рис. 5.11 – Расчетная система](image-url)

Собственные частоты колебаний при следующих формах колебаний составляют 8,55 Гц и 33,11 Гц (рис. 5.12).
Если одна из рассмотренных форм колебаний с фиксированной частотой прикладывается к расчетной системе, находящейся в состоянии равновесия, то можно получить колебания с постоянными параметрами на определенном временном интервале при помощи команды STEP – НН с учетом действительных значений фаз колебаний (рис. 5.13). Таким образом, колебания в системе возникают при приложении возбуждающего усилия только в левом узле, как показано на рисунке 5.12.

Второй узел системы, расположенный на правом конце балки, колеблется с более низкой амплитудой в противоположной фазе относительно первого узла. Максимальное значение отклика берется из графика, представленного на рисунке 5.13.

В случае если оба узла системы загружаются одинаковой нагрузкой и частотой колебаний, в результате получаются совершенно разные временные
характеристики и частотные спектры, значения которых зависят от фазы возбуждения. Более низкие частоты собственных колебаний возникают в системе в случае, если оба возбуждения находятся в одной фазе. Более высокие частоты возникают в системе, если они находятся в противоположных фазах. Нахождение возбуждающих усилий в промежуточных фазах приводит к возникновению переходных форм колебаний.

Сдвиг по фазе 0:

Контрольные значения реакции:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>(u_r - u_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Hz</td>
<td>247</td>
</tr>
<tr>
<td>14 Hz</td>
<td>198</td>
</tr>
<tr>
<td>21 Hz</td>
<td>148</td>
</tr>
<tr>
<td>28 Hz</td>
<td>138</td>
</tr>
<tr>
<td>35 Hz</td>
<td>133</td>
</tr>
</tbody>
</table>

Сдвиг по фазе \(T/2 \):

Контрольные значения реакции:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>(u_r - u_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Hz</td>
<td>6</td>
</tr>
<tr>
<td>14 Hz</td>
<td>27</td>
</tr>
<tr>
<td>21 Hz</td>
<td>83</td>
</tr>
<tr>
<td>28 Hz</td>
<td>301</td>
</tr>
<tr>
<td>35 Hz</td>
<td>883</td>
</tr>
</tbody>
</table>
Сдвиг по фазе $T/4$:

Контрольные значения реакции:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Reactor Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Hz</td>
<td>174 176</td>
</tr>
<tr>
<td>14 Hz</td>
<td>144 139</td>
</tr>
<tr>
<td>21 Hz</td>
<td>128 112</td>
</tr>
<tr>
<td>28 Hz</td>
<td>261 204</td>
</tr>
<tr>
<td>35 Hz</td>
<td>568 689</td>
</tr>
</tbody>
</table>

Спектр значений реакции системы энергетической суперпозиции, расположенные справа, могут быть превышены в крайне неблагоприятных случаях.

5.4.3 Суперпозиция возбудителей землетрясения, приложенных в разных направлениях

Подобная проблема возникает при вводе возбудителей землетрясения, действующих в разных направлениях, в состояние суперпозиции. В большинстве случаев, рассматриваемые возбудители представлены в виде горизонтального ускорения, которое может быть приложeno к расчетной системе в любом направлении и более уменьшенного по значению вертикального ускорения. В наиболее распространенных случаях спектры значений реакций системы при действии вертикально и горизонтально направленного ускорения отличны друг от друга, из чего можно сделать вывод, что может потребоваться увеличение количества случаев загружения системы.

Классический анализ расчетной системы подразумевает ввод ускорений в виде единичных нагрузок, действующих на систему в различных направлениях, а впоследствии эти единичные нагрузки накладываются (состояние суперпозиции)
друг на друга. Подробное описание ввода можно найти в руководстве к модулю MAXIMA.

Учитывая тот факт, что неблагоприятное направление действия возбуждающего усилия (ускорения) определяется лишь с некоторой вероятностью или приблизительно, подобная форму ввода крайне трудоемка для проектировщика-расчетчика. Однако, если расчетная система обладает линейными свойствами (именно поэтому возможен ввод параметров в состояние суперпозиции), это не составит большого труда. Согласно методу SRSS, значения усилий, действующих в трех ортогональных направлениях системы, накладывается для получения суммарного значения. Также, если учесть признак взаимосвязи внутренних усилий и моментов, полученные результаты будут отражать реальную реакцию системы на нагружение.

Особого внимания, прежде всего, заслуживает абсолютная размерность ускорения. Если ускорение действует в одном направлении и одновременно с ним действует другое боковое или поперечное ускорение, значение которого составляет 50% от первого, то действие простого прямого ускорения может быть направлено абсолютно в любую сторону, а его значение равно: $\sqrt{1 + 0,25} = 1,118$. Согласно методу спектров реакций/откликов вся информация о фазах колебаний системы лишается какого-либо смысла и, как следствие, становится бесполезным и вывод значений реакций в суперпозиции.

Далее в качестве примера этот эффект продемонстрирован на расчетной системе, представленной в виде консольной стойки или колонны. Эта колонна имеет одинаковую жесткость при изгибе при I_y и I_z (моменты инерции). В результате, система имеет два собственных значения, которые позволяют сделать заключение о том, что пусть действие обеих форм колебаний перпендикулярно друг другу, но они отклоняют колонну, хоть и незначительно, по диагонали (рис. 5.14).
Рис. 5.14 – Реакция системы на действие перпендикулярных форм колебаний

При этом обе формы колебаний имеют незначительные искажения, относительно моментов M_y и M_z:

Форма колебаний 1: $MY = -5133$; $MZ = +5059$;
Форма колебаний 2: $MY = -5059$; $MZ = +5133$.

Теперь приложим ускорение точно в направлении двух диагоналей:

```plaintext
PROG DYNA
EIGE 2 REST ; CTRL STYP 1 $ Sign !
LC 11 ; ACCE AX 2.0 2.0 ; RESP RDIN
EXTR MY,MZ
END
EIGE 2 REST ; CTRL STYP 1 $ Sign !
LC 12 ; ACCE AX 2.0 -2.0 ; RESP RDIN
EXTR MY,MZ
END
```

Результирующие максимальные значения моментов:

$L C 11$: MY 12.89 MZ -12.89;
Только при помощи метода CQC можно получить корректные симметричные результаты. При использовании метода SRSS будут сохранены небольшие отклонения результирующих значений.

Перед использованием метода SRSS, пользователь должен представлять, какие должны быть получены результирующие значения по окончанию расчета. В данной задаче нам не нужно определять максимальное угловое напряжение, необходимо узнать значение максимального изгибающего момента \(M_y \). Известно, что его можно получить в случае, когда ускорение действует в направлении локальной оси \(z \). Но тогда ускорение и, следовательно, поперечное напряжение будут равны нулю! Если оба направления действия возбуждающего усилия добавлены в виде векторов, то значение изгибающего момента \(M_z \) должно быть соответствующим, что, естественно, применимо только тогда, когда знак момента был определен пользователем, как это было сказано в начале абзаца.

Ввод данных условий выглядит следующим образом:

```
PROG DYNA
CTRL STYP 3 ! SRSS
EIGE 2 REST
LC 31 ; ACCE AX 2.0 2.0 ; RESP RDIN
LC 32 ; ACCE AX 2.0 -2.0 ; RESP RDIN
EXTR MY,MZ
END
```

В результате получаем следующие значения:

Случай загружения \(LC31 \): MY 18.23 MZ 0.00;
Случай загружения \(LC32 \): MY 0.00 MZ 18.23.
Соответствующие усилия и моменты, возникающие в расчетной системе от действия возбуждающего землетрясение усилия, не определяются следующим вводом:

```
PROG DYNA
CTRL STYP 3 ! SRSS
EIGE 2 REST
LC 35 ; ACCE AX 2.0 2.0 ; RESP RDIN
LC 36 ; ACCE AX 2.0 -2.0 ; RESP RDIN
EXTR BEAM
END
```

В результате получаем следующие значения:

Случай загружения LC35: MY 18.23 MZ 18.23;
Случай загружения LC36: MY 18.23 MZ 18.23.

Полученные значения внутренних усилий и моментов не соответствуют заданной нагрузке!

5.5 Многоярусная стержневая конструкция (каркас, ферма)

В качестве следующего примера динамического анализа при помощи модуля DYNA будет рассмотрена расчетная система, представленная в виде трехъярусной стержневой конструкции (рис. 5.15).
Поскольку перекрытия конструкции заданы как бесконечно жесткие элементы, то проанализирована она может быть, как расчетная система, состоящая из трех балок с соответствующими граничными условиями:

PROG AQUA
HEAD THREE-Story FRAME
NORM EC 2
MATE 1 30000 GAM 0
SVAL 1 1 1.0 IY 0.00600000
SVAL 2 1 1.0 IY 0.00466666
SVAL 3 1 1.0 IY 0.00200000
END

PROG SOFIMSHA
HEAD THREE-Story FRAME
SYST FRAM
NODE 1 0 0 FIX F
NODE (2 4 1) (3 3) 0 FIX PXMZ
BEAM (1 3 1) (1 1) (2 1) NCS (1 1)
MASS 2 0 200 ; MASS 3 0 200 ; MASS 4 0 100
END
Сначала проводится динамический анализ системы, к грунтовому основанию которого приложено ускорение равное 3 м/с², путем прямого интегрирования:

```
PROG DYNA
HEAD BASE POINT EXCITATION
STEP 250 0.01 5
LC 11 ; ACCE AY 3.0
FUNC 0.5 1.0 0.0
HIST U-Y 4 LCST 11 ; MYA 1 3 1 ==
EXTR MY,VZ 11,12 ACT E
END
```

Здесь принимается синусоидальное возбуждение, которое, конечно же, никоим образом не имитирует реальное землетрясение.

Controll Information

- Number of unknowns: 3
- unknowns per node: 6
- Number of timesteps: 250
- Time-step: 0.0100
- Printing intervall: 5
- damping factor A: 0.000E+00
- damping factor B: 0.000E+00
- Integr.Parameter beta: 0.25
- Integr.Parameter delta: 0.50
- Integr.Parameter theta: 1.00

Beam Elements

Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam

Sum of masses

<table>
<thead>
<tr>
<th></th>
<th>TMX</th>
<th>TMY</th>
<th>TMZ</th>
<th>RMX</th>
<th>RMY</th>
<th>RMZ</th>
<th>RM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>[t]</td>
<td>[t]</td>
<td>[t]</td>
<td>[tm2]</td>
<td>[tm2]</td>
<td>[tm2]</td>
<td>[tm2]</td>
</tr>
</tbody>
</table>

Total on $S = \begin{bmatrix} 0.000 & 500.000 & 500.000 & 0.000 & 0.000 & 0.000 \\ 0.000 & 0.000 & 0.000 & 0.000 & 17100.000 & 0.000 \\ 0.000 & 0.000 & 0.000 & 0.000 & 17100.000 & 0.000 \end{bmatrix}$

Active on $S = \begin{bmatrix} 0.000 & 500.000 & 0.000 & 0.000 & 0.000 & 0.000 \\ 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 17100.000 \end{bmatrix}$

--- Load Case 11

<table>
<thead>
<tr>
<th>amplitude</th>
<th>period</th>
<th>phase</th>
<th>T-min</th>
<th>T-max</th>
<th>S[-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000</td>
<td>0.50000</td>
<td>0.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-X</td>
<td>a-Y</td>
<td>a-Z</td>
<td>a-XX</td>
<td>a-YY</td>
<td>a-ZZ</td>
</tr>
<tr>
<td>[m/sec²]</td>
<td>[m/sec²]</td>
<td>[m/sec²]</td>
<td>[1/sec²]</td>
<td>[1/sec²]</td>
<td>[1/sec²]</td>
</tr>
<tr>
<td>0.00</td>
<td>3.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter of System of Equations

- Number of unknowns: 3 (Direct skyline Gauss-Solver)
- Total entries: 5
- Total entries after fill in: 5
- Mass matrix: 3
Maximum Forces and Moments

MAX-Vz (LC 12) MIN-Vz
MAX-My (LC 11) MIN-My

Forces in Beam-Elements

<table>
<thead>
<tr>
<th>Number</th>
<th>X[m]</th>
<th>LC</th>
<th>N[kN]</th>
<th>Vy[kN]</th>
<th>Vz[kN]</th>
<th>Mt[kNm]</th>
<th>My[kNm]</th>
<th>Mz[kNm]</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
<td>3259.99</td>
<td>0.0</td>
<td>-4889.98</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3525.16</td>
<td>0.0</td>
<td>5287.74</td>
<td>0.0</td>
<td>0.850</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>3259.99</td>
<td>0.0</td>
<td>-4889.98</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3525.16</td>
<td>0.0</td>
<td>5287.74</td>
<td>0.0</td>
<td>0.850</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>3259.99</td>
<td>0.0</td>
<td>-4889.98</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td>3.000</td>
<td>12</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>3259.99</td>
<td>0.0</td>
<td>4889.98</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3525.16</td>
<td>0.0</td>
<td>-5287.74</td>
<td>0.0</td>
<td>0.850</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>3259.99</td>
<td>0.0</td>
<td>4889.98</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3525.16</td>
<td>0.0</td>
<td>-5287.74</td>
<td>0.0</td>
<td>0.850</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
<td>3010.99</td>
<td>0.0</td>
<td>-4516.49</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3026.71</td>
<td>0.0</td>
<td>4540.06</td>
<td>0.0</td>
<td>0.850</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3026.71</td>
<td>0.0</td>
<td>4540.06</td>
<td>0.0</td>
<td>0.850</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
<td>3010.99</td>
<td>0.0</td>
<td>-4516.49</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td>3.000</td>
<td>12</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>3010.99</td>
<td>0.0</td>
<td>4516.49</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3026.71</td>
<td>0.0</td>
<td>-4516.49</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3026.71</td>
<td>0.0</td>
<td>4540.06</td>
<td>0.0</td>
<td>0.850</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>3010.99</td>
<td>0.0</td>
<td>4516.49</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3026.71</td>
<td>0.0</td>
<td>4540.06</td>
<td>0.0</td>
<td>0.850</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
<td>1568.77</td>
<td>0.0</td>
<td>-2353.15</td>
<td>0.0</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-1293.20</td>
<td>0.0</td>
<td>1939.80</td>
<td>0.0</td>
<td>0.850</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-1293.20</td>
<td>0.0</td>
<td>1939.80</td>
<td>0.0</td>
<td>0.850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>1568.77</td>
<td>0.0</td>
<td>-2353.15</td>
<td>0.0</td>
<td>1.150</td>
</tr>
</tbody>
</table>
Результатирующие значения внутренних усилий и моментов, возникающих в балке, выводятся в виде таблицы, в которой отводится по четыре столбца на рассматриваемое сечение балки. Порядок этих столбцов соответствует четырем предельным значениям, запрошенных пользователем:

<table>
<thead>
<tr>
<th>Time history</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 4 (E 3) u-Y MINIMUM = -141.203 MAXIMUM = 147.970 [mm]</td>
</tr>
</tbody>
</table>

хранится в базе данных модуля DYNR под идентификационным номером №11

<table>
<thead>
<tr>
<th>Time history</th>
</tr>
</thead>
<tbody>
<tr>
<td>element 1 MY MINIMUM = -4889.98 MAXIMUM = 5287.74 [kNm]</td>
</tr>
<tr>
<td>element 2 MY MINIMUM = -4516.49 MAXIMUM = 4540.06 [kNm]</td>
</tr>
<tr>
<td>element 3 MY MINIMUM = -2353.15 MAXIMUM = 1939.80 [kNm]</td>
</tr>
</tbody>
</table>

stored in database for DYNR with identification no 11

Теперь, используя модуль DYNR, можно построить график колебаний (изменение параметра по времени):

```
PROG DYNR
HEAD GRAPHICAL PRESENTATION
HIST 11 U-Y 4 1000
HIST 11 MY 1 1000 2 2000 3 3000
END
```

Ниже представлены два графика, полученные при помощи модуля DYNR.
Рис. 5.16 – График колебаний, построенный в модуле DYNR

Рис. 5.17 – График изменения моментов изгиба в балках в процессе колебаний, построенный в модуле DYNR

При помощи модального анализа расчетной системы и дополнительного ввода:

```
EIGE 3 SIMU 3
STEP 50 0.5
```

будут получены значения результирующих частот собственных колебаний, которые представлены ниже.

Eigenfrequencies
Using Vectoriteration

Iterationsvectors 3
Iterations 3

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>8.888E+01</td>
<td>3.20E-16</td>
<td>9.428</td>
<td>1.501</td>
<td>0.666</td>
<td>0.000000</td>
<td>85.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4.0000E+02</td>
<td>2.84E-16</td>
<td>20.000</td>
<td>3.183</td>
<td>0.314</td>
<td>0.000000</td>
<td>10.0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9.3333E+02</td>
<td>7.31E-16</td>
<td>30.550</td>
<td>4.862</td>
<td>0.206</td>
<td>0.000000</td>
<td>4.70</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

-- Load Case 11

<table>
<thead>
<tr>
<th>amplitude</th>
<th>period</th>
<th>phase</th>
<th>T-min</th>
<th>T-max</th>
<th>S[-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000</td>
<td>0.50000</td>
<td>0.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-X</td>
<td>a-Y</td>
<td>a-Z</td>
<td>a-XX</td>
<td>a-YY</td>
<td>a-ZZ</td>
</tr>
<tr>
<td>[m/sec²]</td>
<td>[m/sec²]</td>
<td>[m/sec²]</td>
<td>[1/sec²]</td>
<td>[1/sec²]</td>
<td>[1/sec²]</td>
</tr>
<tr>
<td>0.00</td>
<td>3.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modal load contributions per function

<table>
<thead>
<tr>
<th>funct.</th>
<th>Mode</th>
<th>R*V-factor</th>
<th>VRV-factor</th>
<th>mode</th>
<th>R*V-factor</th>
<th>VRV-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>-6.194E+01</td>
<td>-3.000E+00</td>
<td>3</td>
<td>-1.460E+01</td>
<td>-3.000E+00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-2.121E+01</td>
<td>-3.000E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sq. Sum</td>
<td></td>
<td>4.500E+03</td>
<td>-9.000E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum modal factors in time history

Mode 1: 1.969E+00 Mode 2: 1.334E-01 Mode 3: 2.480E-02

Сумма масс составляет 500 тонн. Ускорение составляет 3 m/c². Таким образом, сумма модальных составляющих составляет $3^2 \cdot 500 = 4500$. Если не рассматривать все формы колебаний, то в первой из них было бы задействовано 85,2 процентов от общей массы, а при рассмотрении первых двух форм 95,3 процентов.
Полученные результаты не идентичны друг другу, потому что при модальном анализе система интегрируется так, что ошибка/погрешность возникает только через достаточно широкие временные интервалы, тогда как при прямой интеграции системы возникает дополнительная ошибка в процессе самой интеграции.

Maximum Forces and Moments

<table>
<thead>
<tr>
<th>MAX-Vz</th>
<th>MIN-Vz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX-My</td>
<td>MIN-My</td>
</tr>
</tbody>
</table>

Forces in Beam-Elements

<table>
<thead>
<tr>
<th>Number</th>
<th>X[m]</th>
<th>LC</th>
<th>N[kN]</th>
<th>Vy[kN]</th>
<th>Vz[kN]</th>
<th>My[kNm]</th>
<th>Mz[kNm]</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
<td>3161.31</td>
<td>0.0</td>
<td>-4741.97</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3425.04</td>
<td>0.0</td>
<td>5137.56</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3425.04</td>
<td>0.0</td>
<td>5137.56</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>3161.31</td>
<td>0.0</td>
<td>-4741.97</td>
<td>0.0</td>
</tr>
<tr>
<td>3.000</td>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3161.31</td>
<td>0.0</td>
<td>4741.97</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3425.04</td>
<td>0.0</td>
<td>-5137.56</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-3425.04</td>
<td>0.0</td>
<td>-5137.56</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
<td>2940.57</td>
<td>0.0</td>
<td>-4410.85</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>2947.84</td>
<td>0.0</td>
<td>4421.77</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>2947.84</td>
<td>0.0</td>
<td>4421.77</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>2940.57</td>
<td>0.0</td>
<td>-4410.85</td>
<td>0.0</td>
</tr>
<tr>
<td>3.000</td>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2940.57</td>
<td>0.0</td>
<td>4410.85</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>2947.84</td>
<td>0.0</td>
<td>-4421.77</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>2947.84</td>
<td>0.0</td>
<td>-4421.77</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
<td>1527.92</td>
<td>0.0</td>
<td>-2291.88</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Для определения значений реакций, полученные в ходе анализа, расчетная система будет рассчитана несколько раз. Этот анализ возможен только по собственным значениям системы.

С учетом этого факта ввод (программный код) должен быть изменен следующим образом:

```
PROG DYNA
HEAD STEADY-STATE EXCITATION
EIGE 3 REST
STEP 0
LC 15 ; ACCE AY 3.0 ; FUNC 0.5 1.5 0.0
```
Пользователь может выбрать один из четырех вариантов команд, которые используются при изменении программного кода системы:

- статистический анализ без переходных компонентов (CTRL SRES 0);
- статистический анализ с переходными компонентами (CTRL SRES 1);
- точный анализ с учетом сдвига по фазе – угол сдвига фаз (CTRL SRES 2);
- анализ одиночной фазы колебаний переходного состояния системы.

В последнем случае ввод (программный код) должен быть изменен следующим образом:

```
PROG DYNA
HEAD STEADY-STATE EXCITATION
EIGE 3 REST
MODD 1,2,3 0.0
STEP -50
LC 17 ; ACCE AY 3.0 ; FUNC 0.5 1.5 0.0
EXTR MY,S
HIST U-Y 3 4 LCST 17
END
```

Данный ввод приводит к возникновению следующих значений расчетных параметров:

<table>
<thead>
<tr>
<th>Fct.</th>
<th>Mode</th>
<th>Response</th>
<th>phase</th>
<th>Mode</th>
<th>Response</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1</td>
<td>1.346E+00</td>
<td></td>
<td>3</td>
<td>-2.824E-02</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-1.314E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modal Response (SRES 0/2)
Response of loading is pure steady state without transient parts
Contributions of all functions will be added as absolut values
Modal Response (SRES 1)

Response of loading is pure steady state without transient parts.

Contributions of all functions will be added as absolut values.

<table>
<thead>
<tr>
<th>Fct.</th>
<th>Mode</th>
<th>Response</th>
<th>phase</th>
<th>Mode</th>
<th>Response</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>3.140E+00</td>
<td></td>
<td>3</td>
<td>-3.986E-02</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-2.140E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

То же касается и результирующих перемещений:

Nodal Displacements method CQC

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>0.000</td>
<td>101.480</td>
<td>0.000</td>
<td></td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Nodal Displacements method CQC

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>0.000</td>
<td>230.612</td>
<td>0.000</td>
<td></td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Forces in Beam-Elements

<table>
<thead>
<tr>
<th>Number</th>
<th>X[m]</th>
<th>LC</th>
<th>N[kN]</th>
<th>Vy[kN]</th>
<th>Vz[kN]</th>
<th>Mt[kNm]</th>
<th>My[kNm]</th>
<th>Mz[kNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1970.43</td>
<td>0.0</td>
<td>-2955.65</td>
<td>0.0</td>
</tr>
<tr>
<td>3.000</td>
<td>0.0</td>
<td>0.0</td>
<td>1970.43</td>
<td>0.0</td>
<td>2955.65</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2092.53</td>
<td>0.0</td>
<td>-3138.80</td>
<td>0.0</td>
</tr>
<tr>
<td>3.000</td>
<td>0.0</td>
<td>0.0</td>
<td>2092.53</td>
<td>0.0</td>
<td>3138.80</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1152.50</td>
<td>0.0</td>
<td>-1728.75</td>
<td>0.0</td>
</tr>
<tr>
<td>3.000</td>
<td>0.0</td>
<td>0.0</td>
<td>1152.50</td>
<td>0.0</td>
<td>1728.75</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Number</td>
<td>X[m]</td>
<td>LC</td>
<td>N[kN]</td>
<td>Vy[kN]</td>
<td>Vz[kN]</td>
<td>Mt[kNm]</td>
<td>My[kNm]</td>
<td>Mz[kNm]</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>----</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>2501.60</td>
<td>0.0</td>
<td>3752.41</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3.000</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>2501.60</td>
<td>0.0</td>
<td>3752.41</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>1929.10</td>
<td>0.0</td>
<td>2893.64</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3.000</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>1929.10</td>
<td>0.0</td>
<td>2893.64</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>904.54</td>
<td>0.0</td>
<td>1356.81</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3.000</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>904.54</td>
<td>0.0</td>
<td>1356.81</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Далее будет рассмотрен спектр реакций системы. Сначала будет рассмотрен спектр реакций, подобный спектру, приведенному в стандарте DIN 4149, но с повышенными значениями. В противоположность предыдущему возбуждению спектр включает в себя истинные значения частотных характеристик процесса землетрясения. Как и в предыдущем случае, анализ возможен только с учетом собственных значений. Вывод графика изменения параметров колебаний невозможен.

Для определения корректных значений спектра реакции и условий ввода в состояние суперпозиции CQC необходимо определить модальное затухание собственных форм колебаний.

```plaintext
PROG SOFILOAD
HEAD EARTHQUAKE REPONSE SPECTRA
LC 21 ; ACCE AY 3.9 ; RESP RDIN
END

PROG DYNA
HEAD EARTHQUAKE RESPONSE SPECTRUM
EIGE 3 REST ; MODD 1,2,3 0.05,0.07,0.09
STEP 0
LC 21
```
Выход результатов расчета выглядит следующим образом:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>8.8888E+01</td>
<td>3.20E-16</td>
<td>9.428</td>
<td>1.501</td>
<td>0.666</td>
<td>0.00000</td>
<td>85.30</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4.0000E+02</td>
<td>2.84E-16</td>
<td>20.000</td>
<td>3.183</td>
<td>0.314</td>
<td>0.00000</td>
<td>10.0</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9.3333E+02</td>
<td>7.31E-16</td>
<td>30.550</td>
<td>4.862</td>
<td>0.206</td>
<td>0.00000</td>
<td>4.70</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Load Case
-- Spectra 21 D

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0500</td>
<td>1.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.450</td>
<td>3.000</td>
<td>3.000</td>
<td>0.800</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>a-X</td>
<td>a-Y</td>
<td>a-Z</td>
<td>a-XX</td>
<td>a-YY</td>
<td>a-ZZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[m/sec^2] [m/sec^2] [m/sec^2] [1/sec^2] [1/sec^2] [1/sec^2]
| 0.00 | 3.90 | 0.00 |

Modal load contributions per function

<table>
<thead>
<tr>
<th>funct.</th>
<th>Mode</th>
<th>R*V-factor</th>
<th>VRV-factor</th>
<th>mode</th>
<th>R*V-factor</th>
<th>VRV-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1</td>
<td>-8.052E+01</td>
<td>-3.900E+00</td>
<td>3</td>
<td>-1.898E+01</td>
<td>-3.900E+00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-2.758E+01</td>
<td>-3.900E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sq. Sum</td>
<td></td>
<td>7.605E+03</td>
<td>-1.170E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modal Response

Response of loading is pure steady state without transient parts

Contributions of all functions will be added as absolut values

<table>
<thead>
<tr>
<th>Fct.</th>
<th>Mode</th>
<th>Response</th>
<th>phase</th>
<th>Mode</th>
<th>Response</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1</td>
<td>-6.617E+01</td>
<td></td>
<td>3</td>
<td>-1.719E+02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-6.294E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(SRES 1)
Sum of forces (Base-Shear)

<table>
<thead>
<tr>
<th>funct.</th>
<th>Mode</th>
<th>SX[kN]</th>
<th>SY[kN]</th>
<th>SZ[kN]</th>
<th>MX[kNm]</th>
<th>MY[kNm]</th>
<th>MZ[kNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td>0.0</td>
<td>1236.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7691.17</td>
</tr>
</tbody>
</table>

Nodal Masses

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000</td>
<td>500.000</td>
<td>500.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

NODAL DISPLACEMENTS METHOD CQC

<table>
<thead>
<tr>
<th>Node</th>
<th>v-X-max</th>
<th>Time</th>
<th>v-Y-max</th>
<th>Time</th>
<th>v-Z-max</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[m/sec²]</td>
<td>[sec]</td>
<td>[m/sec²]</td>
<td>[sec]</td>
<td>[m/sec²]</td>
<td>[sec]</td>
</tr>
<tr>
<td>MAX</td>
<td>0.00</td>
<td>45.655</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

NODAL DISPLACEMENTS METHOD CQC

<table>
<thead>
<tr>
<th>Node</th>
<th>v-X-max</th>
<th>Time</th>
<th>v-Y-max</th>
<th>Time</th>
<th>v-Z-max</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[m/sec²]</td>
<td>[sec]</td>
<td>[m/sec²]</td>
<td>[sec]</td>
<td>[m/sec²]</td>
<td>[sec]</td>
</tr>
<tr>
<td>MAX</td>
<td>0.00</td>
<td>00.44</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

NODAL DISPLACEMENTS METHOD CQC

<table>
<thead>
<tr>
<th>Node</th>
<th>v-X-max</th>
<th>Time</th>
<th>v-Y-max</th>
<th>Time</th>
<th>v-Z-max</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[m/sec²]</td>
<td>[sec]</td>
<td>[m/sec²]</td>
<td>[sec]</td>
<td>[m/sec²]</td>
<td>[sec]</td>
</tr>
<tr>
<td>MAX</td>
<td>0.00</td>
<td>4.38</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Forces in Beam-Elements

<table>
<thead>
<tr>
<th>Number</th>
<th>X[m]</th>
<th>LC</th>
<th>N[kN]</th>
<th>Vy[kN]</th>
<th>Vz[kN]</th>
<th>Mt[kNm]</th>
<th>My[kNm]</th>
<th>Mz[kNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1236.19</td>
<td>0.0</td>
<td>1854.29</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1236.19</td>
<td>0.0</td>
<td>1854.29</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>949.04</td>
<td>0.0</td>
<td>1423.55</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>949.04</td>
<td>0.0</td>
<td>1423.55</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>438.18</td>
<td>0.0</td>
<td>657.27</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>438.18</td>
<td>0.0</td>
<td>657.27</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Ранее был проведен анализ с использованием различных значений параметра демпфирования и табличных кривых изменения. В следующем примере были получены спектры параметров колебаний системы с учетом акселерограмм, полученных при регистрации реального землетрясения —
El–Centro–Accelerogram.

```
PROG DYNA
HEAD EARTHQUAKE RESPONSE SPECTRUM EL CENTRO
EIGE 3 REST
MODD 1 0.04
  2 0.05
  3 0.05
STEP 0
LC 40 ; ACCE AY 10.0
RESP UBC F MOD 0.0 TITL 'EL-CENTRO RESPONSE d=0.00'
FUNC 0.10 10. RESP 0.00
  0.16 30.
  0.20 23.
  0.30 12.
  0.40 20.
  0.50 13.
  0.70 10.
  1.00 6.
  2.00 3.
  3.00 3.
RESP UBC F MOD 0.02 TITL 'EL-CENTRO RESPONSE d=0.02'
FUNC 0.10 0.6
  0.16 1.4
```
Load Case

-- Spectra 40 EL-CENTRO RESPONSE d=0.00

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>1.000</td>
<td></td>
<td></td>
<td>0.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>x'</td>
<td>y'</td>
<td>z'</td>
<td>a-X</td>
<td>a-Y</td>
<td>a-Z</td>
<td>a-XX</td>
<td>a-YY</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1.300</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>0.700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>3.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0200</td>
<td>0.600</td>
<td>0.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.400</td>
<td>0.160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.100</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.100</td>
<td>0.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>0.400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>0.700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.200</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.200</td>
<td>3.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1000</td>
<td>0.500</td>
<td>0.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>0.160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>0.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>0.400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>0.700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td>3.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.00 10.00 0.00
Modal load contributions per function

<table>
<thead>
<tr>
<th>funct.</th>
<th>Mode</th>
<th>$R\times V$-factor</th>
<th>$V\times R\times V$-factor</th>
<th>mode</th>
<th>$R\times V$-factor</th>
<th>$V\times R\times V$-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1</td>
<td>-2.065E+02</td>
<td>-1.000E+01</td>
<td>3</td>
<td>-4.867E+01</td>
<td>-1.000E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-7.071E+01</td>
<td>-1.000E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sq. Sum</td>
<td></td>
<td>5.000E+04</td>
<td>-3.000E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modal Response
Response of loading is pure steady state without transient parts
Contributions of all function will be added as absolut values

<table>
<thead>
<tr>
<th>funct.</th>
<th>Mode</th>
<th>$R\times V$-factor</th>
<th>$V\times R\times V$-factor</th>
<th>mode</th>
<th>$R\times V$-factor</th>
<th>$V\times R\times V$-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1</td>
<td>-1.501E+00</td>
<td></td>
<td>3</td>
<td>-4.954E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.623E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Здесь возбуждающее колебания ускорение было включено в функцию спектра. По этой причине суммы квадратов модальных компонент колебательной системы точно соответствуют общей массе.

NODAL DISPLACEMENTS METHOD CQC

<table>
<thead>
<tr>
<th>Node</th>
<th>$v\times X$-max</th>
<th>Time</th>
<th>$v\times Y$-max</th>
<th>Time</th>
<th>$v\times Z$-max</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[m/sec^2]</td>
<td>[sec]</td>
<td>[m/sec^2]</td>
<td>[sec]</td>
<td>[m/sec^2]</td>
<td>[sec]</td>
</tr>
<tr>
<td>MAX</td>
<td>0.00</td>
<td>103.762</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

NODAL DISPLACEMENTS METHOD CQC

<table>
<thead>
<tr>
<th>Node</th>
<th>$v\times X$-max</th>
<th>Time</th>
<th>$v\times Y$-max</th>
<th>Time</th>
<th>$v\times Z$-max</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[m/sec^2]</td>
<td>[sec]</td>
<td>[m/sec^2]</td>
<td>[sec]</td>
<td>[m/sec^2]</td>
<td>[sec]</td>
</tr>
<tr>
<td>MAX</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
NODAL DISPLACEMENTS METHOD CQC

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>0.00</td>
<td>10.22</td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Forces in Beam-Elements

<table>
<thead>
<tr>
<th>Number</th>
<th>X[m]</th>
<th>LC</th>
<th>N[kN]</th>
<th>Vy[kN]</th>
<th>Vz[kN]</th>
<th>Mt[kNm]</th>
<th>My[kNm]</th>
<th>Mz[kNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>2809.72</td>
<td>0.0</td>
<td>4214.59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3.00</td>
<td>0.0</td>
<td>0.0</td>
<td>2809.72</td>
<td>0.0</td>
<td>4214.59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>2161.46</td>
<td>0.0</td>
<td>3242.19</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3.00</td>
<td>0.0</td>
<td>0.0</td>
<td>2161.46</td>
<td>0.0</td>
<td>3242.19</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>1022.36</td>
<td>0.0</td>
<td>1533.54</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3.00</td>
<td>0.0</td>
<td>0.0</td>
<td>1022.36</td>
<td>0.0</td>
<td>1533.54</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>